import pyarrow import altair as alt alt.data_transformers.disable_max_rows() alt.data_transformers.enable('default') from sklearn.neighbors import NearestNeighbors import pandas as pd from numpy import random import numpy as np def base_plot(plot_data): base = alt.Chart(plot_data).mark_text().encode( alt.X('x',axis=alt.Axis(grid=False),scale=alt.Scale(domain=(-65,65))), alt.Y('y',axis=alt.Axis(grid=False),scale=alt.Scale(domain=(-65,65))), text='subreddit') return base def zoom_plot(plot_data): chart = base_plot(plot_data) chart = chart.encode(alt.Color(field='color',type='nominal',scale=alt.Scale(scheme='category10'))) chart = chart.interactive() chart = chart.properties(width=1275,height=1000) return chart def viewport_plot(plot_data): selector1 = alt.selection_interval(encodings=['x','y'],init={'x':(-65,65),'y':(-65,65)}) selectorx2 = alt.selection_interval(encodings=['x'],init={'x':(30,40)}) selectory2 = alt.selection_interval(encodings=['y'],init={'y':(-20,0)}) base = base_plot(plot_data) viewport = base.mark_point(fillOpacity=0.2,opacity=0.2).encode( alt.X('x',axis=alt.Axis(grid=False)), alt.Y('y',axis=alt.Axis(grid=False)), ) viewport = viewport.properties(width=600,height=400) viewport1 = viewport.add_selection(selector1) viewport2 = viewport.encode( alt.X('x',axis=alt.Axis(grid=False),scale=alt.Scale(domain=selector1)), alt.Y('y',axis=alt.Axis(grid=False),scale=alt.Scale(domain=selector1)) ) viewport2 = viewport2.add_selection(selectorx2) viewport2 = viewport2.add_selection(selectory2) sr = base.encode(alt.X('x',axis=alt.Axis(grid=False),scale=alt.Scale(domain=selectorx2)), alt.Y('y',axis=alt.Axis(grid=False),scale=alt.Scale(domain=selectory2)) ) sr = sr.encode(alt.Color(field='color',type='nominal',scale=alt.Scale(scheme='category10'))) sr = sr.properties(width=1275,height=600) chart = (viewport1 | viewport2) & sr return chart def assign_cluster_colors(tsne_data, clusters, n_colors, n_neighbors = 4): tsne_data = tsne_data.merge(clusters,on='subreddit') centroids = tsne_data.groupby('cluster').agg({'x':np.mean,'y':np.mean}) color_ids = np.arange(n_colors) distances = np.empty(shape=(centroids.shape[0],centroids.shape[0])) groups = tsne_data.groupby('cluster') for centroid in centroids.itertuples(): c_dists = groups.apply(lambda r: min(np.sqrt(np.square(centroid.x - r.x) + np.square(centroid.y-r.y)))) distances[:,centroid.Index] = c_dists # nbrs = NearestNeighbors(n_neighbors=n_neighbors).fit(centroids) # distances, indices = nbrs.kneighbors() nbrs = NearestNeighbors(n_neighbors=n_neighbors,metric='precomputed').fit(distances) distances, indices = nbrs.kneighbors() color_assignments = np.repeat(-1,len(centroids)) for i in range(len(centroids)): knn = indices[i] knn_colors = color_assignments[knn] available_colors = color_ids[list(set(color_ids) - set(knn_colors))] if(len(available_colors) > 0): color_assignments[i] = available_colors[0] else: raise Exception("Can't color this many neighbors with this many colors") centroids = centroids.reset_index() colors = centroids.loc[:,['cluster']] colors['color'] = color_assignments tsne_data = tsne_data.merge(colors,on='cluster') return(tsne_data) term_data = pd.read_feather("tsne_subreddit_fit.feather") clusters = pd.read_feather("term_3000_clusters.feather") tsne_data = assign_cluster_colors(term_data,clusters,10,8) term_zoom_plot = zoom_plot(tsne_data) term_zoom_plot.save("subreddit_terms_tsne_3000.html") term_viewport_plot = viewport_plot(tsne_data) term_viewport_plot.save("subreddit_terms_tsne_3000_viewport.html") commenter_data = pd.read_feather("tsne_author_fit.feather") clusters = pd.read_feather('author_3000_clusters.feather') commenter_data = assign_cluster_colors(commenter_data,clusters,10,8) commenter_zoom_plot = zoom_plot(commenter_data) commenter_viewport_plot = viewport_plot(commenter_data) commenter_zoom_plot.save("subreddit_commenters_tsne_3000.html") commenter_viewport_plot.save("subreddit_commenters_tsne_3000_viewport.html") # chart = chart.properties(width=10000,height=10000) # chart.save("test_tsne_whole.svg")