from pyarrow import dataset as ds import numpy as np import pandas as pd import plotnine as pn random = np.random.RandomState(1968) def load_densities(term_density_file="/gscratch/comdata/output/reddit_density/comment_terms_10000.feather", author_density_file="/gscratch/comdata/output/reddit_density/comment_authors_10000.feather"): term_density = pd.read_feather(term_density_file) author_density = pd.read_feather(author_density_file) term_density.rename({'overlap_density':'term_density','index':'subreddit'},axis='columns',inplace=True) author_density.rename({'overlap_density':'author_density','index':'subreddit'},axis='columns',inplace=True) density = term_density.merge(author_density,on='subreddit',how='inner') return density def load_clusters(term_clusters_file="/gscratch/comdata/output/reddit_clustering/comment_terms_10000.feather", author_clusters_file="/gscratch/comdata/output/reddit_clustering/comment_authors_10000.feather"): term_clusters = pd.read_feather(term_clusters_file) author_clusters = pd.read_feather(author_clusters_file) # rename, join and return term_clusters.rename({'cluster':'term_cluster'},axis='columns',inplace=True) author_clusters.rename({'cluster':'author_cluster'},axis='columns',inplace=True) clusters = term_clusters.merge(author_clusters,on='subreddit',how='inner') return clusters if __name__ == '__main__': df = load_densities() cl = load_clusters() df['td_rank'] = df.term_density.rank() df['ad_rank'] = df.author_density.rank() df['td_percentile'] = df.td_rank / df.shape[0] df['ad_percentile'] = df.ad_rank / df.shape[0] df = df.merge(cl, on='subreddit',how='inner') term_cluster_density = df.groupby('term_cluster').agg({'td_rank':['mean','min','max'], 'ad_rank':['mean','min','max'], 'td_percentile':['mean','min','max'], 'ad_percentile':['mean','min','max'], 'subreddit':['count']}) author_cluster_density = df.groupby('author_cluster').agg({'td_rank':['mean','min','max'], 'ad_rank':['mean','min','max'], 'td_percentile':['mean','min','max'], 'ad_percentile':['mean','min','max'], 'subreddit':['count']}) # which clusters have the most term_density? term_cluster_density.iloc[term_cluster_density.td_rank['mean'].sort_values().index] # which clusters have the most author_density? term_cluster_density.iloc[term_cluster_density.ad_rank['mean'].sort_values(ascending=False).index].loc[term_cluster_density.subreddit['count'] >= 5][0:20] high_density_term_clusters = term_cluster_density.loc[(term_cluster_density.td_percentile['mean'] > 0.75) & (term_cluster_density.subreddit['count'] > 5)] # let's just use term density instead of author density for now. We can do a second batch with author density next. chosen_clusters = high_density_term_clusters.sample(3,random_state=random) cluster_info = df.loc[df.term_cluster.isin(chosen_clusters.index.values)] chosen_subreddits = cluster_info.subreddit.values dataset = ds.dataset("/gscratch/comdata/output/reddit_comments_by_subreddit.parquet",format='parquet') comments = dataset.to_table(filter=ds.field("subreddit").isin(chosen_subreddits),columns=['id','subreddit','author','CreatedAt']) comments = comments.to_pandas() comments['week'] = comments.CreatedAt.dt.date - pd.to_timedelta(comments['CreatedAt'].dt.dayofweek, unit='d') author_timeseries = comments.loc[:,['subreddit','author','week']].drop_duplicates().groupby(['subreddit','week']).count().reset_index() for clid in chosen_clusters.index.values: ts = pd.read_feather(f"data/ts_term_cluster_{clid}.feather") pn.options.figure_size = (11.7,8.27) p = pn.ggplot(ts) p = p + pn.geom_line(pn.aes('week','value',group='subreddit')) p = p + pn.facet_wrap('~ subreddit') p.save(f"plots/ts_term_cluster_{clid}.png") fig, ax = pyplot.subplots(figsize=(11.7,8.27)) g = sns.FacetGrid(ts,row='subreddit') g.map_dataframe(sns.scatterplot,'week','value',data=ts,ax=ax)