from sklearn.cluster import KMeans import fire from pathlib import Path from dataclasses import dataclass from clustering_base import clustering_result, clustering_job from grid_sweep import grid_sweep @dataclass class kmeans_clustering_result(clustering_result): n_clusters:int n_init:int max_iter:int class kmeans_job(clustering_job): def __init__(self, infile, outpath, name, n_clusters, n_init=10, max_iter=100000, random_state=1968, verbose=True): super().__init__(infile, outpath, name, call=kmeans_job._kmeans_clustering, n_clusters=n_clusters, n_init=n_init, max_iter=max_iter, random_state=random_state, verbose=verbose) self.n_clusters=n_clusters self.n_init=n_init self.max_iter=max_iter def _kmeans_clustering(mat, *args, **kwargs): clustering = KMeans(*args, **kwargs, ).fit(mat) return clustering def get_info(self): result = super().get_info() self.result = kmeans_clustering_result(**result.__dict__, n_init=self.n_init, max_iter=self.max_iter) return self.result class kmeans_grid_sweep(grid_sweep): def __init__(self, inpath, outpath, *args, **kwargs): super().__init__(kmeans_job, inpath, outpath, self.namer, *args, **kwargs) def namer(self, n_clusters, n_init, max_iter): return f"nclusters-{n_clusters}_nit-{n_init}_maxit-{max_iter}" def test_select_kmeans_clustering(): inpath = "/gscratch/comdata/output/reddit_similarity/subreddit_comment_authors-tf_10k_LSI/" outpath = "test_kmeans"; n_clusters=[200,300,400]; n_init=[1,2,3]; max_iter=[100000] gs = kmeans_lsi_grid_sweep(inpath, 'all', outpath, n_clusters, n_init, max_iter) gs.run(1) cluster_selection_epsilons=[0,0.1,0.3,0.5]; cluster_selection_methods=['eom']; lsi_dimensions='all' gs = hdbscan_lsi_grid_sweep(inpath, "all", outpath, min_cluster_sizes, min_samples, cluster_selection_epsilons, cluster_selection_methods) gs.run(20) gs.save("test_hdbscan/lsi_sweep.csv") def run_kmeans_grid_sweep(savefile, inpath, outpath, n_clusters=[500], n_inits=[1], max_iters=[3000]): """Run kmeans clustering once or more with different parameters. Usage: kmeans_clustering.py --savefile=SAVEFILE --inpath=INPATH --outpath=OUTPATH --n_clusters= --n_inits= --max_iters= Keword arguments: savefile: path to save the metadata and diagnostics inpath: path to feather data containing a labeled matrix of subreddit similarities. outpath: path to output fit kmeans clusterings. n_clusters: one or more numbers of kmeans clusters to select. n_inits: one or more numbers of different initializations to use for each clustering. max_iters: one or more numbers of different maximum interations. """ obj = kmeans_grid_sweep(inpath, outpath, map(int,n_clusters), map(int,n_inits), map(int,max_iters)) obj.run(1) obj.save(savefile) if __name__ == "__main__": fire.Fire(run_kmeans_grid_sweep)