from pyspark.sql import functions as f from pyspark.sql import SparkSession from pyspark.sql import Window ## TODO:need to exclude automoderator / bot posts. ## TODO:need to exclude better handle hyperlinks. spark = SparkSession.builder.getOrCreate() df = spark.read.parquet("/gscratch/comdata/users/nathante/reddit_tfidf_test.parquet_temp") include_subs = set(open("/gscratch/comdata/users/nathante/cdsc-reddit/top_25000_subs_by_comments.txt")) include_subs = {s.strip('\n') for s in include_subs} # aggregate counts by week. now subreddit-term is distinct df = df.filter(df.subreddit.isin(include_subs)) df = df.groupBy(['subreddit','term']).agg(f.sum('tf').alias('tf')) max_subreddit_terms = df.groupby(['subreddit']).max('tf') # subreddits are unique max_subreddit_terms = max_subreddit_terms.withColumnRenamed('max(tf)','sr_max_tf') df = df.join(max_subreddit_terms, on='subreddit') df = df.withColumn("relative_tf", df.tf / df.sr_max_tf) # group by term. term is unique idf = df.groupby(['term']).count() N_docs = df.select('subreddit').distinct().count() idf = idf.withColumn('idf',f.log(N_docs/f.col('count'))) # collect the dictionary to make a pydict of terms to indexes terms = idf.select('term').distinct() # terms are distinct terms = terms.withColumn('term_id',f.row_number().over(Window.orderBy("term"))) # term ids are distinct # make subreddit ids subreddits = df.select(['subreddit']).distinct() subreddits = subreddits.withColumn('subreddit_id',f.row_number().over(Window.orderBy("subreddit"))) df = df.join(subreddits,on='subreddit') # map terms to indexes in the tfs and the idfs df = df.join(terms,on='term') # subreddit-term-id is unique idf = idf.join(terms,on='term') # join on subreddit/term to create tf/dfs indexed by term df = df.join(idf, on=['term_id','term']) # agg terms by subreddit to make sparse tf/df vectors df = df.withColumn("tf_idf", (0.5 + (0.5 * df.relative_tf) * df.idf)) df.write.parquet('/gscratch/comdata/users/nathante/subreddit_tfidf.parquet',mode='overwrite',compression='snappy')