import pyarrow import pandas as pd from numpy import random import numpy as np from sklearn.manifold import TSNE df = pd.read_feather("reddit_term_similarity_3000.feather") df = df.sort_values(['i','j']) n = max(df.i.max(),df.j.max()) def zero_pad(grp): p = grp.shape[0] grp = grp.sort_values('j') return np.concatenate([np.zeros(n-p),np.ones(1),np.array(grp.value)]) col_names = df.sort_values('j').loc[:,['subreddit_j']].drop_duplicates() first_name = list(set(df.subreddit_i) - set(df.subreddit_j))[0] col_names = [first_name] + list(col_names.subreddit_j) mat = df.groupby('i').apply(zero_pad) mat.loc[n] = np.concatenate([np.zeros(n),np.ones(1)]) mat = np.stack(mat) mat = mat + np.tril(mat.transpose(),k=-1) dist = 2*np.arccos(mat)/np.pi tsne_model = TSNE(2,learning_rate=750,perplexity=50,n_iter=10000,metric='precomputed',early_exaggeration=20,n_jobs=-1) tsne_fit_model = tsne_model.fit(dist) tsne_fit_whole = tsne_fit_model.fit_transform(dist) plot_data = pd.DataFrame({'x':tsne_fit_whole[:,0],'y':tsne_fit_whole[:,1], 'subreddit':col_names}) plot_data.to_feather("tsne_subreddit_fit.feather")