from pyspark.sql import functions as f from pyspark.sql import SparkSession spark = SparkSession.builder.getOrCreate() df = spark.read.parquet("/gscratch/comdata/users/nathante/reddit_tfidf_test.parquet_temp") max_subreddit_week_terms = df.groupby(['subreddit','week']).max('tf') max_subreddit_week_terms = max_subreddit_week_terms.withColumnRenamed('max(tf)','sr_week_max_tf') df = df.join(max_subreddit_week_terms, ['subreddit','week']) df = df.withColumn("relative_tf", df.tf / df.sr_week_max_tf) # group by term / week idf = df.groupby(['term','week']).count() idf = idf.withColumnRenamed('count','idf') # output: term | week | df #idf.write.parquet("/gscratch/comdata/users/nathante/reddit_tfidf_test_sorted_tf.parquet_temp",mode='overwrite',compression='snappy') # collect the dictionary to make a pydict of terms to indexes terms = idf.select('term').distinct() terms = terms.withColumn('term_id',f.monotonically_increasing_id()) # print('collected terms') # terms = [t.term for t in terms] # NTerms = len(terms) # term_id_map = {term:i for i,term in enumerate(sorted(terms))} # term_id_map = spark.sparkContext.broadcast(term_id_map) # print('term_id_map is broadcasted') # def map_term(x): # return term_id_map.value[x] # map_term_udf = f.udf(map_term) # map terms to indexes in the tfs and the idfs df = df.join(terms,on='term') idf = idf.join(terms,on='term') # join on subreddit/term/week to create tf/dfs indexed by term df = df.join(idf, on=['term_id','week','term']) # agg terms by subreddit to make sparse tf/df vectors df = df.withColumn("tf_idf",df.relative_tf / df.sr_week_max_tf) df = df.groupby(['subreddit','week']).agg(f.collect_list(f.struct('term_id','tf_idf')).alias('tfidf_maps')) df = df.withColumn('tfidf_vec', f.map_from_entries('tfidf_maps')) # output: subreddit | week | tf/df df.write.parquet('/gscratch/comdata/users/nathante/test_tfidf.parquet',mode='overwrite',compression='snappy')