import pyarrow import altair as alt alt.data_transformers.disable_max_rows() alt.data_transformers.enable('data_server') import pandas as pd from numpy import random import numpy as np from sklearn.manifold import TSNE df = pd.read_csv("reddit_term_similarity_3000.csv") df = df.sort_values(['i','j']) n = max(df.i.max(),df.j.max()) def zero_pad(grp): p = grp.shape[0] grp = grp.sort_values('j') return np.concatenate([np.zeros(n-p),np.zeros(1),np.array(grp.value)]) col_names = df.sort_values('j').loc[:,['subreddit_j']].drop_duplicates() first_name = list(set(df.subreddit_i) - set(df.subreddit_j))[0] col_names = [first_name] + list(col_names.subreddit_j) mat = df.groupby('i').apply(zero_pad) mat.loc[n] = np.concatenate([np.zeros(n),np.ones(1)]) mat = np.stack(mat) # plot the matrix using the first and second eigenvalues mat = mat + np.tril(mat.transpose(),k=-1) tsne_model = TSNE(2,learning_rate=500,perplexity=40,n_iter=2000) tsne_fit_model = tsne_model.fit(mat) tsne_fit_whole = tsne_fit_model.fit_transform(mat) plot_data = pd.DataFrame({'x':tsne_fit_whole[:,0],'y':tsne_fit_whole[:,1], 'subreddit':col_names}) plot_data.to_feather("tsne_subreddit_fit.feather") slider = alt.binding_range(min=1,max=100,step=1,name='zoom: ') selector = alt.selection_single(name='zoomselect',fields=['zoom'],bind='scales',init={'zoom':1}) xrange = plot_data.x.max()-plot_data.x.min() yrange = plot_data.y.max()-plot_data.y.min() chart = alt.Chart(plot_data).mark_text().encode( alt.X('x',axis=alt.Axis(grid=False)), alt.Y('y',axis=alt.Axis(grid=False)), text='subreddit') #chart = chart.add_selection(selector) chart = chart.configure_view( continuousHeight=xrange/20, continuousWidth=yrange/20 ) amount_shown = lambda zoom: {'width':xrange/zoom,'height':yrange/zoom} alt.data_transformers.enable('default') chart = chart.properties(width=1000,height=1000) chart = chart.interactive() chart.save("test_tsne_whole.html") chart = chart.properties(width=10000,height=10000) chart.save("test_tsne_whole.svg")