from pyspark.sql import functions as f from pyspark.sql import SparkSession import pandas as pd import fire from pathlib import Path from similarities_helper import prep_tfidf_entries, read_tfidf_matrix, select_topN_subreddits def cosine_similarities(infile, term_colname, outfile, min_df=None, included_subreddits=None, topN=500, exclude_phrases=False): spark = SparkSession.builder.getOrCreate() conf = spark.sparkContext.getConf() print(outfile) print(exclude_phrases) tfidf = spark.read.parquet(infile) if included_subreddits is None: included_subreddits = select_topN_subreddits(topN) else: included_subreddits = set(open(included_subreddits)) if exclude_phrases == True: tfidf = tfidf.filter(~f.col(term_colname).contains("_")) print("creating temporary parquet with matrix indicies") tempdir = prep_tfidf_entries(tfidf, term_colname, min_df, included_subreddits) tfidf = spark.read.parquet(tempdir.name) subreddit_names = tfidf.select(['subreddit','subreddit_id_new']).distinct().toPandas() subreddit_names = subreddit_names.sort_values("subreddit_id_new") subreddit_names['subreddit_id_new'] = subreddit_names['subreddit_id_new'] - 1 spark.stop() print("loading matrix") mat = read_tfidf_matrix(tempdir.name, term_colname) print('computing similarities') sims = column_similarities(mat) del mat sims = pd.DataFrame(sims.todense()) sims = sims.rename({i:sr for i, sr in enumerate(subreddit_names.subreddit.values)}, axis=1) sims['subreddit'] = subreddit_names.subreddit.values p = Path(outfile) output_feather = Path(str(p).replace("".join(p.suffixes), ".feather")) output_csv = Path(str(p).replace("".join(p.suffixes), ".csv")) output_parquet = Path(str(p).replace("".join(p.suffixes), ".parquet")) sims.to_feather(outfile) tempdir.cleanup() def term_cosine_similarities(outfile, min_df=None, included_subreddits=None, topN=500, exclude_phrases=False): return cosine_similarities('/gscratch/comdata/output/reddit_similarity/tfidf/comment_terms.parquet', 'term', outfile, min_df, included_subreddits, topN, exclude_phrases) def author_cosine_similarities(outfile, min_df=2, included_subreddits=None, topN=10000): return cosine_similarities('/gscratch/comdata/output/reddit_similarity/tfidf/comment_authors.parquet', 'author', outfile, min_df, included_subreddits, topN, exclude_phrases=False) if __name__ == "__main__": fire.Fire({'term':term_cosine_similarities, 'author':author_cosine_similarities})