X-Git-Url: https://code.communitydata.science/cdsc_reddit.git/blobdiff_plain/01a4c353588ab1a28f36980157daa5e682ea9edc..HEAD:/clustering/selection.py diff --git a/clustering/selection.py b/clustering/selection.py index bfa1c31..520857d 100644 --- a/clustering/selection.py +++ b/clustering/selection.py @@ -6,6 +6,7 @@ from dataclasses import dataclass from multiprocessing import Pool, cpu_count, Array, Process from pathlib import Path from itertools import product, starmap +import numpy as np import pandas as pd import fire import sys @@ -23,16 +24,28 @@ class clustering_result: alt_silhouette_score:float name:str -def do_clustering(damping, convergence_iter, preference_quantile, name, mat, subreddits, max_iter, outdir:Path, random_state, verbose, alt_mat): + +def sim_to_dist(mat): + dist = 1-mat + dist[dist < 0] = 0 + np.fill_diagonal(dist,0) + return dist + +def do_clustering(damping, convergence_iter, preference_quantile, name, mat, subreddits, max_iter, outdir:Path, random_state, verbose, alt_mat, overwrite=False): if name is None: - name = f"damping-{damping}_convergenceIter-{convergence_iter}_preferenceQuantile-{convergence_iter}" + name = f"damping-{damping}_convergenceIter-{convergence_iter}_preferenceQuantile-{preference_quantile}" print(name) sys.stdout.flush() outpath = outdir / (str(name) + ".feather") print(outpath) clustering = _affinity_clustering(mat, subreddits, outpath, damping, max_iter, convergence_iter, preference_quantile, random_state, verbose) - score = silhouette_score(clustering.affinity_matrix_, clustering.labels_, metric='precomputed') - alt_score = silhouette_score(alt_mat, clustering.labels_, metric='precomputed') + mat = sim_to_dist(clustering.affinity_matrix_) + + score = silhouette_score(mat, clustering.labels_, metric='precomputed') + + if alt_mat is not None: + alt_distances = sim_to_dist(alt_mat) + alt_score = silhouette_score(alt_mat, clustering.labels_, metric='precomputed') res = clustering_result(outpath=outpath, damping=damping, @@ -47,7 +60,7 @@ def do_clustering(damping, convergence_iter, preference_quantile, name, mat, sub # alt similiarities is for checking the silhouette coefficient of an alternative measure of similarity (e.g., topic similarities for user clustering). -def select_affinity_clustering(similarities, outdir, damping=[0.9], max_iter=100000, convergence_iter=[30], preference_quantile=[0.5], random_state=1968, verbose=True, alt_similarities=None, J=None): +def select_affinity_clustering(similarities, outdir, outinfo, damping=[0.9], max_iter=100000, convergence_iter=[30], preference_quantile=[0.5], random_state=1968, verbose=True, alt_similarities=None, J=None): damping = list(map(float,damping)) convergence_iter = convergence_iter = list(map(int,convergence_iter)) @@ -80,8 +93,9 @@ def select_affinity_clustering(similarities, outdir, damping=[0.9], max_iter=100 print("running clustering selection") clustering_data = pool.starmap(_do_clustering, hyper_grid) clustering_data = pd.DataFrame(list(clustering_data)) + clustering_data.to_csv(outinfo) + return clustering_data - if __name__ == "__main__": - fire.Fire(select_affinity_clustering) + x = fire.Fire(select_affinity_clustering)