X-Git-Url: https://code.communitydata.science/cdsc_reddit.git/blobdiff_plain/2d21ff1137dfaf83c5a51fdcd8900503c50a06ab..07b0dff9bc0dae2ab6f7fb7334007a5269a512ad:/similarities/weekly_cosine_similarities.py diff --git a/similarities/weekly_cosine_similarities.py b/similarities/weekly_cosine_similarities.py deleted file mode 100644 index e24ceee..0000000 --- a/similarities/weekly_cosine_similarities.py +++ /dev/null @@ -1,81 +0,0 @@ -from pyspark.sql import functions as f -from pyspark.sql import SparkSession -from pyspark.sql import Window -import numpy as np -import pyarrow -import pyarrow.dataset as ds -import pandas as pd -import fire -from itertools import islice, chain -from pathlib import Path -from similarities_helper import * -from multiprocessing import Pool, cpu_count -from functools import partial - - -def _week_similarities(week, simfunc, tfidf_path, term_colname, min_df, max_df, included_subreddits, topN, outdir:Path): - term = term_colname - term_id = term + '_id' - term_id_new = term + '_id_new' - print(f"loading matrix: {week}") - entries, subreddit_names = reindex_tfidf(infile = tfidf_path, - term_colname=term_colname, - min_df=min_df, - max_df=max_df, - included_subreddits=included_subreddits, - topN=topN, - week=week) - mat = csr_matrix((entries[tfidf_colname],(entries[term_id_new], entries.subreddit_id_new))) - print('computing similarities') - sims = column_similarities(mat) - del mat - sims = pd.DataFrame(sims.todense()) - sims = sims.rename({i: sr for i, sr in enumerate(subreddit_names.subreddit.values)}, axis=1) - sims['_subreddit'] = names.subreddit.values - outfile = str(Path(outdir) / str(week)) - write_weekly_similarities(outfile, sims, week, names) - -def pull_weeks(batch): - return set(batch.to_pandas()['week']) - -#tfidf = spark.read.parquet('/gscratch/comdata/users/nathante/subreddit_tfidf_weekly.parquet') -def cosine_similarities_weekly(tfidf_path, outfile, term_colname, min_df = None, max_df=None, included_subreddits = None, topN = 500): - print(outfile) - tfidf_ds = ds.dataset(tfidf_path) - tfidf_ds = tfidf_ds.to_table(columns=["week"]) - batches = tfidf_ds.to_batches() - - with Pool(cpu_count()) as pool: - weeks = set(chain( * pool.imap_unordered(pull_weeks,batches))) - - weeks = sorted(weeks) - # do this step in parallel if we have the memory for it. - # should be doable with pool.map - - print(f"computing weekly similarities") - week_similarities_helper = partial(_week_similarities,simfunc=column_similarities, tfidf_path=tfidf_path, term_colname=term_colname, outdir=outfile, min_df=min_df,max_df=max_df,included_subreddits=included_subreddits,topN=topN) - - with Pool(cpu_count()) as pool: # maybe it can be done with 40 cores on the huge machine? - list(pool.map(week_similarities_helper,weeks)) - -def author_cosine_similarities_weekly(outfile, min_df=2, max_df=None, included_subreddits=None, topN=500): - return cosine_similarities_weekly('/gscratch/comdata/output/reddit_similarity/tfidf_weekly/comment_authors.parquet', - outfile, - 'author', - min_df, - max_df, - included_subreddits, - topN) - -def term_cosine_similarities_weekly(outfile, min_df=None, max_df=None, included_subreddits=None, topN=500): - return cosine_similarities_weekly('/gscratch/comdata/output/reddit_similarity/tfidf_weekly/comment_terms.parquet', - outfile, - 'term', - min_df, - max_df, - included_subreddits, - topN) - -if __name__ == "__main__": - fire.Fire({'authors':author_cosine_similarities_weekly, - 'terms':term_cosine_similarities_weekly})