X-Git-Url: https://code.communitydata.science/cdsc_reddit.git/blobdiff_plain/2d425600a813e2fb280023a5a870b5660c36ea22..2740f55915d6ecca7c5cd800747d9687c4cd9245:/idf_authors.py diff --git a/idf_authors.py b/idf_authors.py new file mode 100644 index 0000000..379de5a --- /dev/null +++ b/idf_authors.py @@ -0,0 +1,43 @@ +from pyspark.sql import functions as f +from pyspark.sql import SparkSession + +spark = SparkSession.builder.getOrCreate() +df = spark.read.parquet("/gscratch/comdata/users/nathante/reddit_tfidf_test_authors.parquet_temp/") + +max_subreddit_week_authors = df.groupby(['subreddit','week']).max('tf') +max_subreddit_week_authors = max_subreddit_week_authors.withColumnRenamed('max(tf)','sr_week_max_tf') + +df = df.join(max_subreddit_week_authors, ['subreddit','week']) + +df = df.withColumn("relative_tf", df.tf / df.sr_week_max_tf) + +# group by term / week +idf = df.groupby(['author','week']).count() + +idf = idf.withColumnRenamed('count','idf') + +# output: term | week | df +#idf.write.parquet("/gscratch/comdata/users/nathante/reddit_tfidf_test_sorted_tf.parquet_temp",mode='overwrite',compression='snappy') + +# collect the dictionary to make a pydict of terms to indexes +authors = idf.select('author').distinct() +authors = authors.withColumn('author_id',f.monotonically_increasing_id()) + + +# map terms to indexes in the tfs and the idfs +df = df.join(terms,on='author') + +idf = idf.join(terms,on='author') + +# join on subreddit/term/week to create tf/dfs indexed by term +df = df.join(idf, on=['author_id','week','author']) + +# agg terms by subreddit to make sparse tf/df vectors +df = df.withColumn("tf_idf",df.relative_tf / df.sr_week_max_tf) + +df = df.groupby(['subreddit','week']).agg(f.collect_list(f.struct('term_id','tf_idf')).alias('tfidf_maps')) + +df = df.withColumn('tfidf_vec', f.map_from_entries('tfidf_maps')) + +# output: subreddit | week | tf/df +df.write.parquet('/gscratch/comdata/users/nathante/test_tfidf_authors.parquet',mode='overwrite',compression='snappy')