X-Git-Url: https://code.communitydata.science/cdsc_reddit.git/blobdiff_plain/4cb7eeec80c5a9c8f49339acd378c515e290ed81..refs/heads/icwsm_dataverse:/clustering/clustering_base.py diff --git a/clustering/clustering_base.py b/clustering/clustering_base.py index 1d24533..2f37b68 100644 --- a/clustering/clustering_base.py +++ b/clustering/clustering_base.py @@ -1,8 +1,10 @@ +import pickle from pathlib import Path import numpy as np import pandas as pd from dataclasses import dataclass from sklearn.metrics import silhouette_score, silhouette_samples +from collections import Counter # this is meant to be an interface, not created directly class clustering_job: @@ -19,10 +21,17 @@ class clustering_job: self.subreddits, self.mat = self.read_distance_mat(self.infile) self.clustering = self.call(self.mat, *self.args, **self.kwargs) self.cluster_data = self.process_clustering(self.clustering, self.subreddits) - self.score = self.silhouette() self.outpath.mkdir(parents=True, exist_ok=True) self.cluster_data.to_feather(self.outpath/(self.name + ".feather")) + self.hasrun = True + self.cleanup() + + def cleanup(self): + self.cluster_data = None + self.mat = None + self.clustering=None + self.subreddits=None def get_info(self): if not self.hasrun: @@ -38,9 +47,11 @@ class clustering_job: return self.result def silhouette(self): - isolates = self.clustering.labels_ == -1 + counts = Counter(self.clustering.labels_) + singletons = [key for key, value in counts.items() if value == 1] + isolates = (self.clustering.labels_ == -1) | (np.isin(self.clustering.labels_,np.array(singletons))) scoremat = self.mat[~isolates][:,~isolates] - if scoremat.shape[0] > 0: + if self.n_clusters > 1: score = silhouette_score(scoremat, self.clustering.labels_[~isolates], metric='precomputed') silhouette_samp = silhouette_samples(self.mat, self.clustering.labels_, metric='precomputed') silhouette_samp = pd.DataFrame({'subreddit':self.subreddits,'score':silhouette_samp}) @@ -51,11 +62,13 @@ class clustering_job: else: score = None self.silsampout = None + return score def read_distance_mat(self, similarities, use_threads=True): + print(similarities) df = pd.read_feather(similarities, use_threads=use_threads) - mat = np.array(df.drop('_subreddit',1)) + mat = np.array(df.drop('_subreddit',axis=1)) n = mat.shape[0] mat[range(n),range(n)] = 1 return (df._subreddit,1-mat) @@ -69,9 +82,13 @@ class clustering_job: self.n_clusters = len(set(clusters)) print(f"found {self.n_clusters} clusters") - cluster_data = pd.DataFrame({'subreddit': subreddits,'cluster':clustering.labels_}) + + self.score = self.silhouette() + print(f"silhouette_score:{self.score}") + + cluster_sizes = cluster_data.groupby("cluster").count().reset_index() print(f"the largest cluster has {cluster_sizes.loc[cluster_sizes.cluster!=-1].subreddit.max()} members") @@ -80,8 +97,9 @@ class clustering_job: print(f"{n_isolates1} clusters have 1 member") - n_isolates2 = (cluster_sizes.loc[cluster_sizes.cluster==-1,['subreddit']]) - + n_isolates2 = cluster_sizes.loc[cluster_sizes.cluster==-1,:]['subreddit'].to_list() + if len(n_isolates2) > 0: + n_isloates2 = n_isolates2[0] print(f"{n_isolates2} subreddits are in cluster -1",flush=True) if n_isolates1 == 0: @@ -91,6 +109,38 @@ class clustering_job: return cluster_data +class twoway_clustering_job(clustering_job): + def __init__(self, infile, outpath, name, call1, call2, args1, args2): + self.outpath = Path(outpath) + self.call1 = call1 + self.args1 = args1 + self.call2 = call2 + self.args2 = args2 + self.infile = Path(infile) + self.name = name + self.hasrun = False + self.args = args1|args2 + + def run(self): + self.subreddits, self.mat = self.read_distance_mat(self.infile) + self.step1 = self.call1(self.mat, **self.args1) + self.clustering = self.call2(self.mat, self.step1, **self.args2) + self.cluster_data = self.process_clustering(self.clustering, self.subreddits) + self.hasrun = True + self.after_run() + self.cleanup() + + def after_run(self): + self.score = self.silhouette() + self.outpath.mkdir(parents=True, exist_ok=True) + print(self.outpath/(self.name+".feather")) + self.cluster_data.to_feather(self.outpath/(self.name + ".feather")) + + + def cleanup(self): + super().cleanup() + self.step1 = None + @dataclass class clustering_result: outpath:Path