X-Git-Url: https://code.communitydata.science/cdsc_reddit.git/blobdiff_plain/4e20dce18834f7276776a1ab824ff95e8c44ef99..07b0dff9bc0dae2ab6f7fb7334007a5269a512ad:/similarities/weekly_cosine_similarities.py diff --git a/similarities/weekly_cosine_similarities.py b/similarities/weekly_cosine_similarities.py deleted file mode 100644 index 4d496f0..0000000 --- a/similarities/weekly_cosine_similarities.py +++ /dev/null @@ -1,73 +0,0 @@ -from pyspark.sql import functions as f -from pyspark.sql import SparkSession -from pyspark.sql import Window -import numpy as np -import pyarrow -import pandas as pd -import fire -from itertools import islice -from pathlib import Path -from similarities_helper import * - - -#tfidf = spark.read.parquet('/gscratch/comdata/users/nathante/subreddit_tfidf_weekly.parquet') -def cosine_similarities_weekly(tfidf_path, outfile, term_colname, min_df = None, included_subreddits = None, topN = 500): - spark = SparkSession.builder.getOrCreate() - conf = spark.sparkContext.getConf() - print(outfile) - tfidf = spark.read.parquet(tfidf_path) - - if included_subreddits is None: - included_subreddits = select_topN_subreddits(topN) - else: - included_subreddits = set(open(included_subreddits)) - - print(f"computing weekly similarities for {len(included_subreddits)} subreddits") - - print("creating temporary parquet with matrix indicies") - tempdir = prep_tfidf_entries_weekly(tfidf, term_colname, min_df, included_subreddits) - - tfidf = spark.read.parquet(tempdir.name) - - # the ids can change each week. - subreddit_names = tfidf.select(['subreddit','subreddit_id_new','week']).distinct().toPandas() - subreddit_names = subreddit_names.sort_values("subreddit_id_new") - subreddit_names['subreddit_id_new'] = subreddit_names['subreddit_id_new'] - 1 - spark.stop() - - weeks = sorted(list(subreddit_names.week.drop_duplicates())) - for week in weeks: - print(f"loading matrix: {week}") - mat = read_tfidf_matrix_weekly(tempdir.name, term_colname, week) - print('computing similarities') - sims = column_similarities(mat) - del mat - - names = subreddit_names.loc[subreddit_names.week == week] - sims = pd.DataFrame(sims.todense()) - - sims = sims.rename({i: sr for i, sr in enumerate(names.subreddit.values)}, axis=1) - sims['subreddit'] = names.subreddit.values - - write_weekly_similarities(outfile, sims, week, names) - - -def author_cosine_similarities_weekly(outfile, min_df=None , included_subreddits=None, topN=500): - return cosine_similarities_weekly('/gscratch/comdata/output/reddit_similarity/tfidf_weekly/comment_authors.parquet', - outfile, - 'author', - min_df, - included_subreddits, - topN) - -def term_cosine_similarities_weekly(outfile, min_df=None, included_subreddits=None, topN=500): - return cosine_similarities_weekly('/gscratch/comdata/output/reddit_similarity/tfidf_weekly/comment_terms.parquet', - outfile, - 'term', - min_df, - included_subreddits, - topN) - -if __name__ == "__main__": - fire.Fire({'author':author_cosine_similarities_weekly, - 'term':term_cosine_similarities_weekly})