X-Git-Url: https://code.communitydata.science/cdsc_reddit.git/blobdiff_plain/4e20dce18834f7276776a1ab824ff95e8c44ef99..628a70734b19c25da5df2e0c9ed4f1616c2b5c10:/similarities/weekly_cosine_similarities.py?ds=inline diff --git a/similarities/weekly_cosine_similarities.py b/similarities/weekly_cosine_similarities.py index 4d496f0..f9c9666 100644 --- a/similarities/weekly_cosine_similarities.py +++ b/similarities/weekly_cosine_similarities.py @@ -8,7 +8,22 @@ import fire from itertools import islice from pathlib import Path from similarities_helper import * +from multiprocessing import pool +def _week_similarities(tempdir, term_colname, week): + print(f"loading matrix: {week}") + mat = read_tfidf_matrix_weekly(tempdir.name, term_colname, week) + print('computing similarities') + sims = column_similarities(mat) + del mat + + names = subreddit_names.loc[subreddit_names.week == week] + sims = pd.DataFrame(sims.todense()) + + sims = sims.rename({i: sr for i, sr in enumerate(names.subreddit.values)}, axis=1) + sims['_subreddit'] = names.subreddit.values + + write_weekly_similarities(outfile, sims, week, names) #tfidf = spark.read.parquet('/gscratch/comdata/users/nathante/subreddit_tfidf_weekly.parquet') def cosine_similarities_weekly(tfidf_path, outfile, term_colname, min_df = None, included_subreddits = None, topN = 500): @@ -36,24 +51,17 @@ def cosine_similarities_weekly(tfidf_path, outfile, term_colname, min_df = None, spark.stop() weeks = sorted(list(subreddit_names.week.drop_duplicates())) - for week in weeks: - print(f"loading matrix: {week}") - mat = read_tfidf_matrix_weekly(tempdir.name, term_colname, week) - print('computing similarities') - sims = column_similarities(mat) - del mat + # do this step in parallel if we have the memory for it. + # should be doable with pool.map - names = subreddit_names.loc[subreddit_names.week == week] - sims = pd.DataFrame(sims.todense()) - - sims = sims.rename({i: sr for i, sr in enumerate(names.subreddit.values)}, axis=1) - sims['subreddit'] = names.subreddit.values - - write_weekly_similarities(outfile, sims, week, names) + def week_similarities_helper(week): + _week_similarities(tempdir, term_colname, week) + with Pool(40) as pool: # maybe it can be done with 40 cores on the huge machine? + list(pool.map(weeks,week_similarities_helper)) -def author_cosine_similarities_weekly(outfile, min_df=None , included_subreddits=None, topN=500): - return cosine_similarities_weekly('/gscratch/comdata/output/reddit_similarity/tfidf_weekly/comment_authors.parquet', +def author_cosine_similarities_weekly(outfile, min_df=2 , included_subreddits=None, topN=500): + return cosine_similarities_weekly('/gscratch/comdata/output/reddit_similarity/tfidf_weekly/comment_authors_100k.parquet', outfile, 'author', min_df, @@ -61,7 +69,7 @@ def author_cosine_similarities_weekly(outfile, min_df=None , included_subreddits topN) def term_cosine_similarities_weekly(outfile, min_df=None, included_subreddits=None, topN=500): - return cosine_similarities_weekly('/gscratch/comdata/output/reddit_similarity/tfidf_weekly/comment_terms.parquet', + return cosine_similarities_weekly('/gscratch/comdata/output/reddit_similarity/tfidf_weekly/comment_terms_100k.parquet', outfile, 'term', min_df, @@ -69,5 +77,5 @@ def term_cosine_similarities_weekly(outfile, min_df=None, included_subreddits=No topN) if __name__ == "__main__": - fire.Fire({'author':author_cosine_similarities_weekly, - 'term':term_cosine_similarities_weekly}) + fire.Fire({'authors':author_cosine_similarities_weekly, + 'terms':term_cosine_similarities_weekly})