X-Git-Url: https://code.communitydata.science/cdsc_reddit.git/blobdiff_plain/56269deee3d33620550d67bdd3c1a7b64eb3f7e4..01a4c353588ab1a28f36980157daa5e682ea9edc:/similarities/cosine_similarities.py diff --git a/similarities/cosine_similarities.py b/similarities/cosine_similarities.py index 54b9599..38b1d7c 100644 --- a/similarities/cosine_similarities.py +++ b/similarities/cosine_similarities.py @@ -1,73 +1,57 @@ -from pyspark.sql import functions as f -from pyspark.sql import SparkSession import pandas as pd import fire from pathlib import Path -from similarities_helper import prep_tfidf_entries, read_tfidf_matrix, select_topN_subreddits, column_similarities +from similarities_helper import similarities, column_similarities +def cosine_similarities(infile, term_colname, outfile, min_df=None, max_df=None, included_subreddits=None, topN=500, exclude_phrases=False, from_date=None, to_date=None, tfidf_colname='tf_idf'): -def cosine_similarities(infile, term_colname, outfile, min_df=None, included_subreddits=None, topN=500, exclude_phrases=False): - spark = SparkSession.builder.getOrCreate() - conf = spark.sparkContext.getConf() - print(outfile) - print(exclude_phrases) + return similarities(infile=infile, simfunc=column_similarities, term_colname=term_colname, outfile=outfile, min_df=min_df, max_df=max_df, included_subreddits=included_subreddits, topN=topN, exclude_phrases=exclude_phrases,from_date=from_date, to_date=to_date, tfidf_colname=tfidf_colname) - tfidf = spark.read.parquet(infile) - if included_subreddits is None: - included_subreddits = select_topN_subreddits(topN) - else: - included_subreddits = set(open(included_subreddits)) +def term_cosine_similarities(outfile, min_df=None, max_df=None, included_subreddits=None, topN=500, exclude_phrases=False, from_date=None, to_date=None): - if exclude_phrases == True: - tfidf = tfidf.filter(~f.col(term_colname).contains("_")) - - print("creating temporary parquet with matrix indicies") - tempdir = prep_tfidf_entries(tfidf, term_colname, min_df, included_subreddits) - tfidf = spark.read.parquet(tempdir.name) - subreddit_names = tfidf.select(['subreddit','subreddit_id_new']).distinct().toPandas() - subreddit_names = subreddit_names.sort_values("subreddit_id_new") - subreddit_names['subreddit_id_new'] = subreddit_names['subreddit_id_new'] - 1 - spark.stop() - - print("loading matrix") - mat = read_tfidf_matrix(tempdir.name, term_colname) - print('computing similarities') - sims = column_similarities(mat) - del mat - - sims = pd.DataFrame(sims.todense()) - sims = sims.rename({i:sr for i, sr in enumerate(subreddit_names.subreddit.values)}, axis=1) - sims['subreddit'] = subreddit_names.subreddit.values - - p = Path(outfile) - - output_feather = Path(str(p).replace("".join(p.suffixes), ".feather")) - output_csv = Path(str(p).replace("".join(p.suffixes), ".csv")) - output_parquet = Path(str(p).replace("".join(p.suffixes), ".parquet")) - - sims.to_feather(outfile) - tempdir.cleanup() - -def term_cosine_similarities(outfile, min_df=None, included_subreddits=None, topN=500, exclude_phrases=False): - return cosine_similarities('/gscratch/comdata/output/reddit_similarity/tfidf/comment_terms.parquet', + return cosine_similarities('/gscratch/comdata/output/reddit_similarity/tfidf/comment_terms_100k.parquet', 'term', outfile, min_df, + max_df, included_subreddits, topN, - exclude_phrases) + exclude_phrases, + from_date, + to_date + ) -def author_cosine_similarities(outfile, min_df=2, included_subreddits=None, topN=10000): - return cosine_similarities('/gscratch/comdata/output/reddit_similarity/tfidf/comment_authors.parquet', +def author_cosine_similarities(outfile, min_df=2, max_df=None, included_subreddits=None, topN=10000, from_date=None, to_date=None): + return cosine_similarities('/gscratch/comdata/output/reddit_similarity/tfidf/comment_authors_100k.parquet', 'author', outfile, min_df, + max_df, included_subreddits, topN, - exclude_phrases=False) + exclude_phrases=False, + from_date=from_date, + to_date=to_date + ) + +def author_tf_similarities(outfile, min_df=2, max_df=None, included_subreddits=None, topN=10000, from_date=None, to_date=None): + return cosine_similarities('/gscratch/comdata/output/reddit_similarity/tfidf/comment_authors_100k.parquet', + 'author', + outfile, + min_df, + max_df, + included_subreddits, + topN, + exclude_phrases=False, + from_date=from_date, + to_date=to_date, + tfidf_colname='relative_tf' + ) + if __name__ == "__main__": fire.Fire({'term':term_cosine_similarities, - 'author':author_cosine_similarities}) + 'author':author_cosine_similarities, + 'author-tf':author_tf_similarities})