X-Git-Url: https://code.communitydata.science/cdsc_reddit.git/blobdiff_plain/56269deee3d33620550d67bdd3c1a7b64eb3f7e4..596e1ff339db30045e0811588557db0492e3af26:/similarities/weekly_cosine_similarities.py diff --git a/similarities/weekly_cosine_similarities.py b/similarities/weekly_cosine_similarities.py index 54856b0..044ee75 100644 --- a/similarities/weekly_cosine_similarities.py +++ b/similarities/weekly_cosine_similarities.py @@ -8,7 +8,22 @@ import fire from itertools import islice from pathlib import Path from similarities_helper import * +from multiprocessing import Pool, cpu_count +def _week_similarities(tempdir, term_colname, week): + print(f"loading matrix: {week}") + mat = read_tfidf_matrix_weekly(tempdir.name, term_colname, week) + print('computing similarities') + sims = column_similarities(mat) + del mat + + names = subreddit_names.loc[subreddit_names.week == week] + sims = pd.DataFrame(sims.todense()) + + sims = sims.rename({i: sr for i, sr in enumerate(names.subreddit.values)}, axis=1) + sims['_subreddit'] = names.subreddit.values + + write_weekly_similarities(outfile, sims, week, names) #tfidf = spark.read.parquet('/gscratch/comdata/users/nathante/subreddit_tfidf_weekly.parquet') def cosine_similarities_weekly(tfidf_path, outfile, term_colname, min_df = None, included_subreddits = None, topN = 500): @@ -25,7 +40,7 @@ def cosine_similarities_weekly(tfidf_path, outfile, term_colname, min_df = None, print(f"computing weekly similarities for {len(included_subreddits)} subreddits") print("creating temporary parquet with matrix indicies") - tempdir = prep_tfidf_entries_weekly(tfidf, term_colname, min_df, included_subreddits) + tempdir = prep_tfidf_entries_weekly(tfidf, term_colname, min_df, max_df=None, included_subreddits=included_subreddits) tfidf = spark.read.parquet(tempdir.name) @@ -35,24 +50,17 @@ def cosine_similarities_weekly(tfidf_path, outfile, term_colname, min_df = None, subreddit_names['subreddit_id_new'] = subreddit_names['subreddit_id_new'] - 1 spark.stop() -d weeks = sorted(list(subreddit_names.week.drop_duplicates())) - for week in weeks: - print(f"loading matrix: {week}") - mat = read_tfidf_matrix_weekly(tempdir.name, term_colname, week) - print('computing similarities') - sims = column_similarities(mat) - del mat + weeks = sorted(list(subreddit_names.week.drop_duplicates())) + # do this step in parallel if we have the memory for it. + # should be doable with pool.map - names = subreddit_names.loc[subreddit_names.week == week] - sims = pd.DataFrame(sims.todense()) - - sims = sims.rename({i: sr for i, sr in enumerate(names.subreddit.values)}, axis=1) - sims['subreddit'] = names.subreddit.values - - write_weekly_similarities(outfile, sims, week, names) + def week_similarities_helper(week): + _week_similarities(tempdir, term_colname, week) + with Pool(cpu_count()) as pool: # maybe it can be done with 40 cores on the huge machine? + list(pool.map(week_similarities_helper,weeks)) -def author_cosine_similarities_weekly(outfile, min_df=None , included_subreddits=None, topN=500): +def author_cosine_similarities_weekly(outfile, min_df=2 , included_subreddits=None, topN=500): return cosine_similarities_weekly('/gscratch/comdata/output/reddit_similarity/tfidf_weekly/comment_authors.parquet', outfile, 'author', @@ -69,5 +77,5 @@ def term_cosine_similarities_weekly(outfile, min_df=None, included_subreddits=No topN) if __name__ == "__main__": - fire.Fire({'author':author_cosine_similarities_weekly, - 'term':term_cosine_similarities_weekly}) + fire.Fire({'authors':author_cosine_similarities_weekly, + 'terms':term_cosine_similarities_weekly})