X-Git-Url: https://code.communitydata.science/cdsc_reddit.git/blobdiff_plain/5632a971c633834720b1beb7f65f8a5d0924c0e7..39c581bee915c97acb67e0de9e0c75e234f55050:/author_cosine_similarity.py diff --git a/author_cosine_similarity.py b/author_cosine_similarity.py new file mode 100644 index 0000000..7b2a766 --- /dev/null +++ b/author_cosine_similarity.py @@ -0,0 +1,78 @@ +from pyspark.sql import functions as f +from pyspark.sql import SparkSession +from pyspark.sql import Window +import numpy as np +import pyarrow +import pandas as pd +import fire +from itertools import islice +from pathlib import Path +from similarities_helper import cosine_similarities + +spark = SparkSession.builder.getOrCreate() +conf = spark.sparkContext.getConf() + +# outfile = '/gscratch/comdata/users/nathante/test_similarities_500.feather'; min_df = None; included_subreddits=None; similarity_threshold=0; +def author_cosine_similarities(outfile, min_df = None, included_subreddits=None, similarity_threshold=0, topN=500, exclude_phrases=True): + ''' + Compute similarities between subreddits based on tfi-idf vectors of author comments + + included_subreddits : string + Text file containing a list of subreddits to include (one per line) if included_subreddits is None then do the top 500 subreddits + + similarity_threshold : double (default = 0) + set > 0 for large numbers of subreddits to get an approximate solution using the DIMSUM algorithm +https://stanford.edu/~rezab/papers/dimsum.pdf. If similarity_threshold=0 we get an exact solution using an O(N^2) algorithm. + + min_df : int (default = 0.1 * (number of included_subreddits) + exclude terms that appear in fewer than this number of documents. + + outfile: string + where to output csv and feather outputs +''' + + print(outfile) + print(exclude_phrases) + + tfidf = spark.read.parquet('/gscratch/comdata/users/nathante/subreddit_tfidf_authors.parquet_test1/part-00000-107cee94-92d8-4265-b804-40f1e7f1aaf2-c000.snappy.parquet') + + if included_subreddits is None: + included_subreddits = list(islice(open("/gscratch/comdata/users/nathante/cdsc-reddit/top_25000_subs_by_comments.txt"),topN)) + included_subreddits = {s.strip('\n') for s in included_subreddits} + + else: + included_subreddits = set(open(included_subreddits)) + + sim_dist, tfidf = cosine_similarities(tfidf, 'author', min_df, included_subreddits, similarity_threshold) + + p = Path(outfile) + + output_feather = Path(str(p).replace("".join(p.suffixes), ".feather")) + output_csv = Path(str(p).replace("".join(p.suffixes), ".csv")) + output_parquet = Path(str(p).replace("".join(p.suffixes), ".parquet")) + sim_dist = sim_dist.entries.toDF() + + sim_dist = sim_dist.repartition(1) + sim_dist.write.parquet(str(output_parquet),mode='overwrite',compression='snappy') + + spark.stop() + + #instead of toLocalMatrix() why not read as entries and put strait into numpy + sim_entries = pd.read_parquet(output_parquet) + + df = tfidf.select('subreddit','subreddit_id_new').distinct().toPandas() + df['subreddit_id_new'] = df['subreddit_id_new'] - 1 + df = df.sort_values('subreddit_id_new').reset_index(drop=True) + df = df.set_index('subreddit_id_new') + + similarities = sim_entries.join(df, on='i') + similarities = similarities.rename(columns={'subreddit':"subreddit_i"}) + similarities = similarities.join(df, on='j') + similarities = similarities.rename(columns={'subreddit':"subreddit_j"}) + + similarities.write_feather(output_feather) + similarities.write_csv(output_csv) + return similarities + +if __name__ == '__main__': + fire.Fire(term_cosine_similarities)