X-Git-Url: https://code.communitydata.science/cdsc_reddit.git/blobdiff_plain/6a3bfa26eebf2f261d953becc844199bab255ff0..95905cfc8b46a93d643c53dd9666ac6b65a516b6:/clustering/select_affinity.py diff --git a/clustering/select_affinity.py b/clustering/select_affinity.py new file mode 100644 index 0000000..b8bd13a --- /dev/null +++ b/clustering/select_affinity.py @@ -0,0 +1,132 @@ +from sklearn.metrics import silhouette_score +from sklearn.cluster import AffinityPropagation +from functools import partial +from dataclasses import dataclass +from clustering import _affinity_clustering, read_similarity_mat, sim_to_dist, process_clustering_result, clustering_result +from multiprocessing import Pool, cpu_count, Array, Process +from pathlib import Path +from itertools import product, starmap +import numpy as np +import pandas as pd +import fire +import sys + +# silhouette is the only one that doesn't need the feature matrix. So it's probably the only one that's worth trying. +@dataclass +class affinity_clustering_result(clustering_result): + damping:float + convergence_iter:int + preference_quantile:float + +def do_affinity_clustering(damping, convergence_iter, preference_quantile, name, mat, subreddits, max_iter, outdir:Path, random_state, verbose, alt_mat, overwrite=False): + if name is None: + name = f"damping-{damping}_convergenceIter-{convergence_iter}_preferenceQuantile-{preference_quantile}" + print(name) + sys.stdout.flush() + outpath = outdir / (str(name) + ".feather") + outpath.parent.mkdir(parents=True,exist_ok=True) + print(outpath) + clustering = _affinity_clustering(mat, outpath, damping, max_iter, convergence_iter, preference_quantile, random_state, verbose) + cluster_data = process_clustering_result(clustering, subreddits) + mat = sim_to_dist(clustering.affinity_matrix_) + + try: + score = silhouette_score(mat, clustering.labels_, metric='precomputed') + except ValueError: + score = None + + if alt_mat is not None: + alt_distances = sim_to_dist(alt_mat) + try: + alt_score = silhouette_score(alt_mat, clustering.labels_, metric='precomputed') + except ValueError: + alt_score = None + + res = affinity_clustering_result(outpath=outpath, + damping=damping, + max_iter=max_iter, + convergence_iter=convergence_iter, + preference_quantile=preference_quantile, + silhouette_score=score, + alt_silhouette_score=score, + name=str(name)) + + return res + +def do_affinity_clustering(damping, convergence_iter, preference_quantile, name, mat, subreddits, max_iter, outdir:Path, random_state, verbose, alt_mat, overwrite=False): + if name is None: + name = f"damping-{damping}_convergenceIter-{convergence_iter}_preferenceQuantile-{preference_quantile}" + print(name) + sys.stdout.flush() + outpath = outdir / (str(name) + ".feather") + outpath.parent.mkdir(parents=True,exist_ok=True) + print(outpath) + clustering = _affinity_clustering(mat, subreddits, outpath, damping, max_iter, convergence_iter, preference_quantile, random_state, verbose) + mat = sim_to_dist(clustering.affinity_matrix_) + + try: + score = silhouette_score(mat, clustering.labels_, metric='precomputed') + except ValueError: + score = None + + if alt_mat is not None: + alt_distances = sim_to_dist(alt_mat) + try: + alt_score = silhouette_score(alt_mat, clustering.labels_, metric='precomputed') + except ValueError: + alt_score = None + + res = clustering_result(outpath=outpath, + damping=damping, + max_iter=max_iter, + convergence_iter=convergence_iter, + preference_quantile=preference_quantile, + silhouette_score=score, + alt_silhouette_score=score, + name=str(name)) + + return res + + +# alt similiarities is for checking the silhouette coefficient of an alternative measure of similarity (e.g., topic similarities for user clustering). + +def select_affinity_clustering(similarities, outdir, outinfo, damping=[0.9], max_iter=100000, convergence_iter=[30], preference_quantile=[0.5], random_state=1968, verbose=True, alt_similarities=None, J=None): + + damping = list(map(float,damping)) + convergence_iter = convergence_iter = list(map(int,convergence_iter)) + preference_quantile = list(map(float,preference_quantile)) + + if type(outdir) is str: + outdir = Path(outdir) + + outdir.mkdir(parents=True,exist_ok=True) + + subreddits, mat = read_similarity_mat(similarities,use_threads=True) + + if alt_similarities is not None: + alt_mat = read_similarity_mat(alt_similarities,use_threads=True) + else: + alt_mat = None + + if J is None: + J = cpu_count() + pool = Pool(J) + + # get list of tuples: the combinations of hyperparameters + hyper_grid = product(damping, convergence_iter, preference_quantile) + hyper_grid = (t + (str(i),) for i, t in enumerate(hyper_grid)) + + _do_clustering = partial(do_affinity_clustering, mat=mat, subreddits=subreddits, outdir=outdir, max_iter=max_iter, random_state=random_state, verbose=verbose, alt_mat=alt_mat) + + # similarities = Array('d', mat) + # call pool.starmap + print("running clustering selection") + clustering_data = pool.starmap(_do_clustering, hyper_grid) + clustering_data = pd.DataFrame(list(clustering_data)) + clustering_data.to_csv(outinfo) + + + return clustering_data + +if __name__ == "__main__": + x = fire.Fire(select_affinity_clustering)