X-Git-Url: https://code.communitydata.science/cdsc_reddit.git/blobdiff_plain/772f3a8fbd54c9d2c5e0d10889c272f44fef127a..6baa08889b2f46c14f2baa5e3d2136cf165b1673:/tfidf_authors.py diff --git a/tfidf_authors.py b/tfidf_authors.py index 92a4965..432ec39 100644 --- a/tfidf_authors.py +++ b/tfidf_authors.py @@ -1,43 +1,19 @@ -from pyspark.sql import functions as f from pyspark.sql import SparkSession +from similarities_helper import build_tfidf_dataset spark = SparkSession.builder.getOrCreate() -df = spark.read.parquet("/gscratch/comdata/users/nathante/reddit_tfidf_test_authors.parquet_temp/") -max_subreddit_week_authors = df.groupby(['subreddit','week']).max('tf') -max_subreddit_week_authors = max_subreddit_week_authors.withColumnRenamed('max(tf)','sr_week_max_tf') +df = spark.read.parquet("/gscratch/comdata/users/nathante/reddit_tfidf_test_authors.parquet_temp") -df = df.join(max_subreddit_week_authors, ['subreddit','week']) +include_subs = set(open("/gscratch/comdata/users/nathante/cdsc-reddit/top_25000_subs_by_comments.txt")) +include_subs = {s.strip('\n') for s in include_subs} -df = df.withColumn("relative_tf", df.tf / df.sr_week_max_tf) +# remove [deleted] and AutoModerator (TODO remove other bots) +df = df.filter(df.author != '[deleted]') +df = df.filter(df.author != 'AutoModerator') -# group by term / week -idf = df.groupby(['author','week']).count() +df = build_tfidf_dataset(df, include_subs, 'author') -idf = idf.withColumnRenamed('count','idf') +df.write.parquet('/gscratch/comdata/users/nathante/subreddit_tfidf_authors.parquet',mode='overwrite',compression='snappy') -# output: term | week | df -#idf.write.parquet("/gscratch/comdata/users/nathante/reddit_tfidf_test_sorted_tf.parquet_temp",mode='overwrite',compression='snappy') - -# collect the dictionary to make a pydict of terms to indexes -authors = idf.select('author').distinct() -authors = authors.withColumn('author_id',f.monotonically_increasing_id()) - - -# map terms to indexes in the tfs and the idfs -df = df.join(authors,on='author') - -idf = idf.join(authors,on='author') - -# join on subreddit/term/week to create tf/dfs indexed by term -df = df.join(idf, on=['author_id','week','author']) - -# agg terms by subreddit to make sparse tf/df vectors -df = df.withColumn("tf_idf",df.relative_tf / df.sr_week_max_tf) - -df = df.groupby(['subreddit','week']).agg(f.collect_list(f.struct('author_id','tf_idf')).alias('tfidf_maps')) - -df = df.withColumn('tfidf_vec', f.map_from_entries('tfidf_maps')) - -# output: subreddit | week | tf/df -df.write.json('/gscratch/comdata/users/nathante/test_tfidf_authors.parquet',mode='overwrite',compression='snappy') +spark.stop()