X-Git-Url: https://code.communitydata.science/cdsc_reddit.git/blobdiff_plain/7b14db67de8650e4858d3f102fbeab813a30ee29..refs/heads/icwsm_dataverse:/clustering/clustering_base.py?ds=sidebyside diff --git a/clustering/clustering_base.py b/clustering/clustering_base.py index 3778fc3..2f37b68 100644 --- a/clustering/clustering_base.py +++ b/clustering/clustering_base.py @@ -1,3 +1,4 @@ +import pickle from pathlib import Path import numpy as np import pandas as pd @@ -20,10 +21,17 @@ class clustering_job: self.subreddits, self.mat = self.read_distance_mat(self.infile) self.clustering = self.call(self.mat, *self.args, **self.kwargs) self.cluster_data = self.process_clustering(self.clustering, self.subreddits) - self.score = self.silhouette() self.outpath.mkdir(parents=True, exist_ok=True) self.cluster_data.to_feather(self.outpath/(self.name + ".feather")) + self.hasrun = True + self.cleanup() + + def cleanup(self): + self.cluster_data = None + self.mat = None + self.clustering=None + self.subreddits=None def get_info(self): if not self.hasrun: @@ -54,11 +62,13 @@ class clustering_job: else: score = None self.silsampout = None + return score def read_distance_mat(self, similarities, use_threads=True): + print(similarities) df = pd.read_feather(similarities, use_threads=use_threads) - mat = np.array(df.drop('_subreddit',1)) + mat = np.array(df.drop('_subreddit',axis=1)) n = mat.shape[0] mat[range(n),range(n)] = 1 return (df._subreddit,1-mat) @@ -72,9 +82,13 @@ class clustering_job: self.n_clusters = len(set(clusters)) print(f"found {self.n_clusters} clusters") - cluster_data = pd.DataFrame({'subreddit': subreddits,'cluster':clustering.labels_}) + + self.score = self.silhouette() + print(f"silhouette_score:{self.score}") + + cluster_sizes = cluster_data.groupby("cluster").count().reset_index() print(f"the largest cluster has {cluster_sizes.loc[cluster_sizes.cluster!=-1].subreddit.max()} members") @@ -95,6 +109,38 @@ class clustering_job: return cluster_data +class twoway_clustering_job(clustering_job): + def __init__(self, infile, outpath, name, call1, call2, args1, args2): + self.outpath = Path(outpath) + self.call1 = call1 + self.args1 = args1 + self.call2 = call2 + self.args2 = args2 + self.infile = Path(infile) + self.name = name + self.hasrun = False + self.args = args1|args2 + + def run(self): + self.subreddits, self.mat = self.read_distance_mat(self.infile) + self.step1 = self.call1(self.mat, **self.args1) + self.clustering = self.call2(self.mat, self.step1, **self.args2) + self.cluster_data = self.process_clustering(self.clustering, self.subreddits) + self.hasrun = True + self.after_run() + self.cleanup() + + def after_run(self): + self.score = self.silhouette() + self.outpath.mkdir(parents=True, exist_ok=True) + print(self.outpath/(self.name+".feather")) + self.cluster_data.to_feather(self.outpath/(self.name + ".feather")) + + + def cleanup(self): + super().cleanup() + self.step1 = None + @dataclass class clustering_result: outpath:Path