X-Git-Url: https://code.communitydata.science/cdsc_reddit.git/blobdiff_plain/8a2248fae1ee5818576b9a8f2849d1ad0efd8187..6e43294a41e030e557d7e612f1e6ddb063482689:/similarities/lsi_similarities.py diff --git a/similarities/lsi_similarities.py b/similarities/lsi_similarities.py index 7ab7e8c..eb89f55 100644 --- a/similarities/lsi_similarities.py +++ b/similarities/lsi_similarities.py @@ -1,20 +1,41 @@ import pandas as pd import fire from pathlib import Path -from similarities_helper import similarities, lsi_column_similarities +from similarities_helper import * +#from similarities_helper import similarities, lsi_column_similarities from functools import partial -def lsi_similarities(infile, term_colname, outfile, min_df=None, max_df=None, included_subreddits=None, topN=500, from_date=None, to_date=None, tfidf_colname='tf_idf',n_components=100,n_iter=5,random_state=1968,algorithm='arpack'): +inpath = "/gscratch/comdata/users/nathante/competitive_exclusion_reddit/data/tfidf/comment_terms_compex.parquet/" +term_colname='term' +outfile='/gscratch/comdata/users/nathante/competitive_exclusion_reddit/data/similarity/comment_terms_compex_LSI' +n_components=[10,50,100] +included_subreddits="/gscratch/comdata/users/nathante/competitive_exclusion_reddit/data/included_subreddits.txt" +n_iter=5 +random_state=1968 +algorithm='arpack' +topN = None +from_date=None +to_date=None +min_df=None +max_df=None +def lsi_similarities(inpath, term_colname, outfile, min_df=None, max_df=None, included_subreddits=None, topN=None, from_date=None, to_date=None, tfidf_colname='tf_idf',n_components=100,n_iter=5,random_state=1968,algorithm='arpack',lsi_model=None): print(n_components,flush=True) - simfunc = partial(lsi_column_similarities,n_components=n_components,n_iter=n_iter,random_state=random_state,algorithm=algorithm) + + if lsi_model is None: + if type(n_components) == list: + lsi_model = Path(outfile) / f'{max(n_components)}_{term_colname}_LSIMOD.pkl' + else: + lsi_model = Path(outfile) / f'{n_components}_{term_colname}_LSIMOD.pkl' - return similarities(infile=infile, simfunc=simfunc, term_colname=term_colname, outfile=outfile, min_df=min_df, max_df=max_df, included_subreddits=included_subreddits, topN=topN, from_date=from_date, to_date=to_date, tfidf_colname=tfidf_colname) + simfunc = partial(lsi_column_similarities,n_components=n_components,n_iter=n_iter,random_state=random_state,algorithm=algorithm,lsi_model_save=lsi_model) + + return similarities(inpath=inpath, simfunc=simfunc, term_colname=term_colname, outfile=outfile, min_df=min_df, max_df=max_df, included_subreddits=included_subreddits, topN=topN, from_date=from_date, to_date=to_date, tfidf_colname=tfidf_colname) # change so that these take in an input as an optional argument (for speed, but also for idf). -def term_lsi_similarities(outfile, min_df=None, max_df=None, included_subreddits=None, topN=500, from_date=None, to_date=None, n_components=300,n_iter=5,random_state=1968,algorithm='arpack'): +def term_lsi_similarities(inpath='/gscratch/comdata/output/reddit_similarity/tfidf/comment_terms_100k.parquet',outfile=None, min_df=None, max_df=None, included_subreddits=None, topN=None, from_date=None, to_date=None, algorithm='arpack', n_components=300,n_iter=5,random_state=1968): - return lsi_similarities('/gscratch/comdata/output/reddit_similarity/tfidf/comment_terms_100k.parquet', + res = lsi_similarities(inpath, 'term', outfile, min_df, @@ -23,11 +44,13 @@ def term_lsi_similarities(outfile, min_df=None, max_df=None, included_subreddits topN, from_date, to_date, - n_components=n_components + n_components=n_components, + algorithm = algorithm ) + return res -def author_lsi_similarities(outfile, min_df=2, max_df=None, included_subreddits=None, topN=10000, from_date=None, to_date=None,n_components=300,n_iter=5,random_state=1968,algorithm='arpack'): - return lsi_similarities('/gscratch/comdata/output/reddit_similarity/tfidf/comment_authors_100k.parquet', +def author_lsi_similarities(inpath='/gscratch/comdata/output/reddit_similarity/tfidf/comment_authors_100k.parquet',outfile=None, min_df=2, max_df=None, included_subreddits=None, topN=None, from_date=None, to_date=None,algorithm='arpack',n_components=300,n_iter=5,random_state=1968): + return lsi_similarities(inpath, 'author', outfile, min_df, @@ -39,8 +62,8 @@ def author_lsi_similarities(outfile, min_df=2, max_df=None, included_subreddits= n_components=n_components ) -def author_tf_similarities(outfile, min_df=2, max_df=None, included_subreddits=None, topN=10000, from_date=None, to_date=None,n_components=300,n_iter=5,random_state=1968,algorithm='arpack'): - return lsi_similarities('/gscratch/comdata/output/reddit_similarity/tfidf/comment_authors_100k.parquet', +def author_tf_similarities(inpath='/gscratch/comdata/output/reddit_similarity/tfidf/comment_authors_100k.parquet',outfile=None, min_df=2, max_df=None, included_subreddits=None, topN=None, from_date=None, to_date=None,n_components=300,n_iter=5,random_state=1968): + return lsi_similarities(inpath, 'author', outfile, min_df, @@ -50,7 +73,8 @@ def author_tf_similarities(outfile, min_df=2, max_df=None, included_subreddits=N from_date=from_date, to_date=to_date, tfidf_colname='relative_tf', - n_components=n_components + n_components=n_components, + algorithm=algorithm )