X-Git-Url: https://code.communitydata.science/cdsc_reddit.git/blobdiff_plain/a60747292e91a47d122158659182f82bfd2e922a..e6294b5b90135a5163441c8dc62252dd6a188412:/old/author_cosine_similarity.py diff --git a/old/author_cosine_similarity.py b/old/author_cosine_similarity.py new file mode 100644 index 0000000..5bd5405 --- /dev/null +++ b/old/author_cosine_similarity.py @@ -0,0 +1,106 @@ +from pyspark.sql import functions as f +from pyspark.sql import SparkSession +from pyspark.sql import Window +import numpy as np +import pyarrow +import pandas as pd +import fire +from itertools import islice +from pathlib import Path +from similarities_helper import * + +#tfidf = spark.read.parquet('/gscratch/comdata/output/reddit_similarity/tfidf_weekly/subreddit_terms.parquet') +def cosine_similarities_weekly(tfidf_path, outfile, term_colname, min_df = None, included_subreddits = None, topN = 500): + spark = SparkSession.builder.getOrCreate() + conf = spark.sparkContext.getConf() + print(outfile) + tfidf = spark.read.parquet(tfidf_path) + + if included_subreddits is None: + included_subreddits = select_topN_subreddits(topN) + + else: + included_subreddits = set(open(included_subreddits)) + + print("creating temporary parquet with matrix indicies") + tempdir = prep_tfidf_entries_weekly(tfidf, term_colname, min_df, included_subreddits) + + tfidf = spark.read.parquet(tempdir.name) + + # the ids can change each week. + subreddit_names = tfidf.select(['subreddit','subreddit_id_new','week']).distinct().toPandas() + subreddit_names = subreddit_names.sort_values("subreddit_id_new") + subreddit_names['subreddit_id_new'] = subreddit_names['subreddit_id_new'] - 1 + spark.stop() + + weeks = list(subreddit_names.week.drop_duplicates()) + for week in weeks: + print("loading matrix") + mat = read_tfidf_matrix_weekly(tempdir.name, term_colname, week) + print('computing similarities') + sims = column_similarities(mat) + del mat + + names = subreddit_names.loc[subreddit_names.week==week] + + sims = sims.rename({i:sr for i, sr in enumerate(names.subreddit.values)},axis=1) + sims['subreddit'] = names.subreddit.values + write_weekly_similarities(outfile, sims, week) + + + +def cosine_similarities(outfile, min_df = None, included_subreddits=None, topN=500): + ''' + Compute similarities between subreddits based on tfi-idf vectors of author comments + + included_subreddits : string + Text file containing a list of subreddits to include (one per line) if included_subreddits is None then do the top 500 subreddits + + min_df : int (default = 0.1 * (number of included_subreddits) + exclude terms that appear in fewer than this number of documents. + + outfile: string + where to output csv and feather outputs +''' + + spark = SparkSession.builder.getOrCreate() + conf = spark.sparkContext.getConf() + print(outfile) + + tfidf = spark.read.parquet('/gscratch/comdata/output/reddit_similarity/tfidf/subreddit_comment_authors.parquet') + + if included_subreddits is None: + included_subreddits = select_topN_subreddits(topN) + + else: + included_subreddits = set(open(included_subreddits)) + + print("creating temporary parquet with matrix indicies") + tempdir = prep_tfidf_entries(tfidf, 'author', min_df, included_subreddits) + tfidf = spark.read.parquet(tempdir.name) + subreddit_names = tfidf.select(['subreddit','subreddit_id_new']).distinct().toPandas() + subreddit_names = subreddit_names.sort_values("subreddit_id_new") + subreddit_names['subreddit_id_new'] = subreddit_names['subreddit_id_new'] - 1 + spark.stop() + + print("loading matrix") + mat = read_tfidf_matrix(tempdir.name,'author') + print('computing similarities') + sims = column_similarities(mat) + del mat + + sims = pd.DataFrame(sims.todense()) + sims = sims.rename({i:sr for i, sr in enumerate(subreddit_names.subreddit.values)},axis=1) + sims['subreddit'] = subreddit_names.subreddit.values + + p = Path(outfile) + + output_feather = Path(str(p).replace("".join(p.suffixes), ".feather")) + output_csv = Path(str(p).replace("".join(p.suffixes), ".csv")) + output_parquet = Path(str(p).replace("".join(p.suffixes), ".parquet")) + + sims.to_feather(outfile) + tempdir.cleanup() + +if __name__ == '__main__': + fire.Fire(author_cosine_similarities)