X-Git-Url: https://code.communitydata.science/cdsc_reddit.git/blobdiff_plain/c0da8f4dbfc62b3b8af0212281eb219d14079d1e..6baa08889b2f46c14f2baa5e3d2136cf165b1673:/tf_comments.py?ds=sidebyside diff --git a/tf_comments.py b/tf_comments.py index 211647e..526bac2 100755 --- a/tf_comments.py +++ b/tf_comments.py @@ -1,11 +1,11 @@ #!/usr/bin/env python3 +import pandas as pd import pyarrow as pa import pyarrow.dataset as ds import pyarrow.parquet as pq from itertools import groupby, islice, chain import fire from collections import Counter -import pandas as pd import os import datetime import re @@ -22,7 +22,6 @@ urlregex = re.compile(r"[-a-zA-Z0-9@:%._\+~#=]{1,256}\.[a-zA-Z0-9()]{1,6}\b([-a- # compute term frequencies for comments in each subreddit by week def weekly_tf(partition, mwe_pass = 'first'): dataset = ds.dataset(f'/gscratch/comdata/output/reddit_comments_by_subreddit.parquet/{partition}', format='parquet') - if not os.path.exists("/gscratch/comdata/users/nathante/reddit_comment_ngrams_10p_sample/"): os.mkdir("/gscratch/comdata/users/nathante/reddit_comment_ngrams_10p_sample/") @@ -31,8 +30,9 @@ def weekly_tf(partition, mwe_pass = 'first'): ngram_output = partition.replace("parquet","txt") - if os.path.exists(f"/gscratch/comdata/users/nathante/reddit_comment_ngrams_10p_sample/{ngram_output}"): - os.remove(f"/gscratch/comdata/users/nathante/reddit_comment_ngrams_10p_sample/{ngram_output}") + if mwe_pass == 'first': + if os.path.exists(f"/gscratch/comdata/users/nathante/reddit_comment_ngrams_10p_sample/{ngram_output}"): + os.remove(f"/gscratch/comdata/users/nathante/reddit_comment_ngrams_10p_sample/{ngram_output}") batches = dataset.to_batches(columns=['CreatedAt','subreddit','body','author']) @@ -161,21 +161,26 @@ def weekly_tf(partition, mwe_pass = 'first'): while True: chunk = islice(outrows,outchunksize) - chunk = (c for c in chunk if c.subreddit is not None) + chunk = (c for c in chunk if c[1] is not None) pddf = pd.DataFrame(chunk, columns=["is_token"] + schema.names) - author_pddf = pddf.loc[pddf.is_token == False, schema.names] pddf = pddf.loc[pddf.is_token == True, schema.names] author_pddf = author_pddf.rename({'term':'author'}, axis='columns') author_pddf = author_pddf.loc[:,author_schema.names] - table = pa.Table.from_pandas(pddf,schema=schema) author_table = pa.Table.from_pandas(author_pddf,schema=author_schema) - if table.shape[0] == 0: + do_break = True + + if table.shape[0] != 0: + writer.write_table(table) + do_break = False + if author_table.shape[0] != 0: + author_writer.write_table(author_table) + do_break = False + + if do_break: break - writer.write_table(table) - author_writer.write_table(author_table) - + writer.close() author_writer.close() @@ -185,7 +190,7 @@ def gen_task_list(mwe_pass='first'): with open("tf_task_list",'w') as outfile: for f in files: if f.endswith(".parquet"): - outfile.write(f"python3 tf_comments.py weekly_tf --mwe-pass {mwe_pass} {f}\n") + outfile.write(f"./tf_comments.py weekly_tf --mwe-pass {mwe_pass} {f}\n") if __name__ == "__main__": fire.Fire({"gen_task_list":gen_task_list,