X-Git-Url: https://code.communitydata.science/cdsc_reddit.git/blobdiff_plain/db53c0138ae36d4b8f75b101315651a259a89dd8..4447c60265c5c5de3281ca135461d91ab5339f03:/fit_tsne.py diff --git a/fit_tsne.py b/fit_tsne.py new file mode 100644 index 0000000..37341d4 --- /dev/null +++ b/fit_tsne.py @@ -0,0 +1,35 @@ +import pyarrow +import pandas as pd +from numpy import random +import numpy as np +from sklearn.manifold import TSNE + +df = pd.read_feather("reddit_term_similarity_3000.feather") +df = df.sort_values(['i','j']) + +n = max(df.i.max(),df.j.max()) + +def zero_pad(grp): + p = grp.shape[0] + grp = grp.sort_values('j') + return np.concatenate([np.zeros(n-p),np.ones(1),np.array(grp.value)]) + +col_names = df.sort_values('j').loc[:,['subreddit_j']].drop_duplicates() +first_name = list(set(df.subreddit_i) - set(df.subreddit_j))[0] +col_names = [first_name] + list(col_names.subreddit_j) +mat = df.groupby('i').apply(zero_pad) +mat.loc[n] = np.concatenate([np.zeros(n),np.ones(1)]) +mat = np.stack(mat) + +mat = mat + np.tril(mat.transpose(),k=-1) +dist = 2*np.arccos(mat)/np.pi + +tsne_model = TSNE(2,learning_rate=200,perplexity=40,n_iter=5000,metric='precomputed') + +tsne_fit_model = tsne_model.fit(dist) + +tsne_fit_whole = tsne_fit_model.fit_transform(mat) + +plot_data = pd.DataFrame({'x':tsne_fit_whole[:,0],'y':tsne_fit_whole[:,1], 'subreddit':col_names}) + +plot_data.to_feather("tsne_subreddit_fit.feather")