X-Git-Url: https://code.communitydata.science/cdsc_reddit.git/blobdiff_plain/e6294b5b90135a5163441c8dc62252dd6a188412..07b0dff9bc0dae2ab6f7fb7334007a5269a512ad:/ngrams/top_comment_phrases.py diff --git a/ngrams/top_comment_phrases.py b/ngrams/top_comment_phrases.py deleted file mode 100644 index 031cba5..0000000 --- a/ngrams/top_comment_phrases.py +++ /dev/null @@ -1,58 +0,0 @@ -from pyspark.sql import functions as f -from pyspark.sql import Window -from pyspark.sql import SparkSession -import numpy as np - -spark = SparkSession.builder.getOrCreate() -df = spark.read.text("/gscratch/comdata/users/nathante/reddit_comment_ngrams_10p_sample/") - -df = df.withColumnRenamed("value","phrase") - -# count phrase occurrances -phrases = df.groupby('phrase').count() -phrases = phrases.withColumnRenamed('count','phraseCount') -phrases = phrases.filter(phrases.phraseCount > 10) - - -# count overall -N = phrases.select(f.sum(phrases.phraseCount).alias("phraseCount")).collect()[0].phraseCount - -print(f'analyzing PMI on a sample of {N} phrases') -logN = np.log(N) -phrases = phrases.withColumn("phraseLogProb", f.log(f.col("phraseCount")) - logN) - -# count term occurrances -phrases = phrases.withColumn('terms',f.split(f.col('phrase'),' ')) -terms = phrases.select(['phrase','phraseCount','phraseLogProb',f.explode(phrases.terms).alias('term')]) - -win = Window.partitionBy('term') -terms = terms.withColumn('termCount',f.sum('phraseCount').over(win)) -terms = terms.withColumnRenamed('count','termCount') -terms = terms.withColumn('termLogProb',f.log(f.col('termCount')) - logN) - -terms = terms.groupBy(terms.phrase, terms.phraseLogProb, terms.phraseCount).sum('termLogProb') -terms = terms.withColumnRenamed('sum(termLogProb)','termsLogProb') -terms = terms.withColumn("phrasePWMI", f.col('phraseLogProb') - f.col('termsLogProb')) - -# join phrases to term counts - - -df = terms.select(['phrase','phraseCount','phraseLogProb','phrasePWMI']) - -df = df.sort(['phrasePWMI'],descending=True) -df = df.sortWithinPartitions(['phrasePWMI'],descending=True) -df.write.parquet("/gscratch/comdata/users/nathante/reddit_comment_ngrams_pwmi.parquet/",mode='overwrite',compression='snappy') - -df = spark.read.parquet("/gscratch/comdata/users/nathante/reddit_comment_ngrams_pwmi.parquet/") - -df.write.csv("/gscratch/comdata/users/nathante/reddit_comment_ngrams_pwmi.csv/",mode='overwrite',compression='none') - -df = spark.read.parquet("/gscratch/comdata/users/nathante/reddit_comment_ngrams_pwmi.parquet") -df = df.select('phrase','phraseCount','phraseLogProb','phrasePWMI') - -# choosing phrases occurring at least 3500 times in the 10% sample (35000 times) and then with a PWMI of at least 3 yeids about 65000 expressions. -# -df = df.filter(f.col('phraseCount') > 3500).filter(f.col("phrasePWMI")>3) -df = df.toPandas() -df.to_feather("/gscratch/comdata/users/nathante/reddit_multiword_expressions.feather") -df.to_csv("/gscratch/comdata/users/nathante/reddit_multiword_expressions.csv")