From: Nathan TeBlunthuis Date: Wed, 18 Nov 2020 00:33:13 +0000 (-0800) Subject: git-annex in nathante@nate-x1:~/cdsc_reddit X-Git-Url: https://code.communitydata.science/cdsc_reddit.git/commitdiff_plain/2cc897543a7c1ff9dee0594385d3b72b275105ee?hp=220a540beb70bf56c2fa4bb558153b303b2207ae git-annex in nathante@nate-x1:~/cdsc_reddit --- diff --git a/tsne_subreddit_fit.feather b/tsne_subreddit_fit.feather index 3416d48..74f6d8c 100644 --- a/tsne_subreddit_fit.feather +++ b/tsne_subreddit_fit.feather @@ -1 +1 @@ -/annex/objects/SHA256E-s60874--224e59dc1946a1feea1667420f758a91bc313b57843963bf79a4618bed9ddde3 +/annex/objects/SHA256E-s60874--d536adb0ec637fca262c4e1ec908dd8b4a5d1464047b583cd1a99cc6dba87191 diff --git a/visualization/tsne_vis.py b/visualization/tsne_vis.py index 1e2aeae..915cd7e 100644 --- a/visualization/tsne_vis.py +++ b/visualization/tsne_vis.py @@ -1,37 +1,125 @@ import pyarrow import altair as alt alt.data_transformers.disable_max_rows() -alt.data_transformers.enable('data_server') +alt.data_transformers.enable('default') +from sklearn.neighbors import NearestNeighbors import pandas as pd from numpy import random import numpy as np -from sklearn.manifold import TSNE -pd.read_feather("tsne_subreddit_fit.feather") +def base_plot(plot_data): + base = alt.Chart(plot_data).mark_text().encode( + alt.X('x',axis=alt.Axis(grid=False),scale=alt.Scale(domain=(-65,65))), + alt.Y('y',axis=alt.Axis(grid=False),scale=alt.Scale(domain=(-65,65))), + text='subreddit') -slider = alt.binding_range(min=1,max=100,step=1,name='zoom: ') -selector = alt.selection_single(name='zoomselect',fields=['zoom'],bind='scales',init={'zoom':1}) + return base -xrange = plot_data.x.max()-plot_data.x.min() -yrange = plot_data.y.max()-plot_data.y.min() +def zoom_plot(plot_data): + chart = base_plot(plot_data) + chart = chart.encode(alt.Color(field='color',type='nominal',scale=alt.Scale(scheme='category10'))) + chart = chart.interactive() + chart = chart.properties(width=1275,height=1000) -chart = alt.Chart(plot_data).mark_text().encode( - alt.X('x',axis=alt.Axis(grid=False)), - alt.Y('y',axis=alt.Axis(grid=False)), - text='subreddit') + return chart -#chart = chart.add_selection(selector) +def viewport_plot(plot_data): + selector1 = alt.selection_interval(encodings=['x','y'],init={'x':(-65,65),'y':(-65,65)}) + selectorx2 = alt.selection_interval(encodings=['x'],init={'x':(30,40)}) + selectory2 = alt.selection_interval(encodings=['y'],init={'y':(-20,0)}) -chart = chart.configure_view( - continuousHeight=xrange/20, - continuousWidth=yrange/20 -) + base = base_plot(plot_data) -amount_shown = lambda zoom: {'width':xrange/zoom,'height':yrange/zoom} + viewport = base.mark_point(fillOpacity=0.2,opacity=0.2).encode( + alt.X('x',axis=alt.Axis(grid=False)), + alt.Y('y',axis=alt.Axis(grid=False)), + ) -alt.data_transformers.enable('default') -chart = chart.properties(width=1000,height=1000) -chart = chart.interactive() -chart.save("test_tsne_whole.html") -chart = chart.properties(width=10000,height=10000) -chart.save("test_tsne_whole.svg") + viewport = viewport.properties(width=600,height=400) + + viewport1 = viewport.add_selection(selector1) + + viewport2 = viewport.encode( + alt.X('x',axis=alt.Axis(grid=False),scale=alt.Scale(domain=selector1)), + alt.Y('y',axis=alt.Axis(grid=False),scale=alt.Scale(domain=selector1)) + ) + + viewport2 = viewport2.add_selection(selectorx2) + viewport2 = viewport2.add_selection(selectory2) + + sr = base.encode(alt.X('x',axis=alt.Axis(grid=False),scale=alt.Scale(domain=selectorx2)), + alt.Y('y',axis=alt.Axis(grid=False),scale=alt.Scale(domain=selectory2)) + ) + + sr = sr.encode(alt.Color(field='color',type='nominal',scale=alt.Scale(scheme='category10'))) + sr = sr.properties(width=1275,height=600) + + + chart = (viewport1 | viewport2) & sr + + + return chart + +def assign_cluster_colors(tsne_data, clusters, n_colors, n_neighbors = 4): + tsne_data = tsne_data.merge(clusters,on='subreddit') + + centroids = tsne_data.groupby('cluster').agg({'x':np.mean,'y':np.mean}) + + color_ids = np.arange(n_colors) + + distances = np.empty(shape=(centroids.shape[0],centroids.shape[0])) + + groups = tsne_data.groupby('cluster') + for centroid in centroids.itertuples(): + c_dists = groups.apply(lambda r: min(np.sqrt(np.square(centroid.x - r.x) + np.square(centroid.y-r.y)))) + distances[:,centroid.Index] = c_dists + + # nbrs = NearestNeighbors(n_neighbors=n_neighbors).fit(centroids) + # distances, indices = nbrs.kneighbors() + + nbrs = NearestNeighbors(n_neighbors=n_neighbors,metric='precomputed').fit(distances) + distances, indices = nbrs.kneighbors() + + color_assignments = np.repeat(-1,len(centroids)) + + for i in range(len(centroids)): + knn = indices[i] + knn_colors = color_assignments[knn] + available_colors = color_ids[list(set(color_ids) - set(knn_colors))] + + if(len(available_colors) > 0): + color_assignments[i] = available_colors[0] + else: + raise Exception("Can't color this many neighbors with this many colors") + + + centroids = centroids.reset_index() + colors = centroids.loc[:,['cluster']] + colors['color'] = color_assignments + + tsne_data = tsne_data.merge(colors,on='cluster') + return(tsne_data) + +term_data = pd.read_feather("tsne_subreddit_fit.feather") +clusters = pd.read_feather("term_3000_clusters.feather") + +tsne_data = assign_cluster_colors(term_data,clusters,10,8) + +term_zoom_plot = zoom_plot(tsne_data) + +term_zoom_plot.save("subreddit_terms_tsne_3000.html") + +term_viewport_plot = viewport_plot(tsne_data) + +term_viewport_plot.save("subreddit_terms_tsne_3000_viewport.html") + +commenter_data = pd.read_feather("tsne_author_fit.feather") +clusters = pd.read_feather('author_3000_clusters.feather') +commenter_data = assign_cluster_colors(commenter_data,clusters,10,8) +commenter_zoom_plot = zoom_plot(commenter_data) +commenter_viewport_plot = viewport_plot(commenter_data) +commenter_zoom_plot.save("subreddit_commenters_tsne_3000.html") +commenter_viewport_plot.save("subreddit_commenters_tsne_3000_viewport.html") + +# chart = chart.properties(width=10000,height=10000) +# chart.save("test_tsne_whole.svg")