From: Nate E TeBlunthuis Date: Tue, 7 Jul 2020 18:45:43 +0000 (-0700) Subject: Build comments dataset similarly to submissions and improve partitioning scheme X-Git-Url: https://code.communitydata.science/cdsc_reddit.git/commitdiff_plain/40d45637702fb51feb9f99ff7f6d71787af765ed?ds=inline;hp=fc6575a28716f6d1611f988c48d15e64a22687ac Build comments dataset similarly to submissions and improve partitioning scheme --- diff --git a/comments_2_parquet.py b/comments_2_parquet.py deleted file mode 100755 index 069434e..0000000 --- a/comments_2_parquet.py +++ /dev/null @@ -1,139 +0,0 @@ -#!/usr/bin/env python3 - -import pyspark -from pyspark.sql import functions as f -from pyspark.sql.types import * -from pyspark import SparkConf, SparkContext -from pyspark.sql import SparkSession, SQLContext - -conf = SparkConf().setAppName("Reddit comments to parquet") -conf = conf.set('spark.sql.crossJoin.enabled',"true") - -spark = SparkSession.builder.getOrCreate() -sc = spark.sparkContext - -globstr = "/gscratch/comdata/raw_data/reddit_dumps/comments/RC_20*.bz2" - -import re -import glob -import json -from subprocess import Popen, PIPE -from datetime import datetime -import pandas as pd -from multiprocessing import Pool - -def open_fileset(globstr): - files = glob.glob(globstr) - for fh in files: - print(fh) - lines = open_input_file(fh) - for line in lines: - yield json.loads(line) - -def open_input_file(input_filename): - if re.match(r'.*\.7z$', input_filename): - cmd = ["7za", "x", "-so", input_filename, '*'] - elif re.match(r'.*\.gz$', input_filename): - cmd = ["zcat", input_filename] - elif re.match(r'.*\.bz2$', input_filename): - cmd = ["bzcat", "-dk", input_filename] - - elif re.match(r'.*\.bz', input_filename): - cmd = ["bzcat", "-dk", input_filename] - elif re.match(r'.*\.xz', input_filename): - cmd = ["xzcat",'-dk',input_filename] - try: - input_file = Popen(cmd, stdout=PIPE).stdout - except NameError: - input_file = open(input_filename, 'r') - return input_file - -def include_row(comment, subreddits_to_track = []): - - subreddit = comment['subreddit'].lower() - - return subreddit in subreddits_to_track - -def parse_comment(comment, names= None): - if names is None: - names = ["id","subreddit","link_id","parent_id","created_utc","author","ups","downs","score","edited","subreddit_type","subreddit_id","stickied","is_submitter","body","error"] - - try: - comment = json.loads(comment) - except json.decoder.JSONDecodeError as e: - print(e) - print(comment) - row = [None for _ in names] - row[-1] = "json.decoder.JSONDecodeError|{0}|{1}".format(e,comment) - return tuple(row) - - row = [] - for name in names: - if name == 'created_utc': - row.append(datetime.fromtimestamp(int(comment['created_utc']),tz=None)) - elif name == 'edited': - val = comment[name] - if type(val) == bool: - row.append(val) - row.append(None) - else: - row.append(True) - row.append(datetime.fromtimestamp(int(val),tz=None)) - elif name == "time_edited": - continue - elif name not in comment: - row.append(None) - - else: - row.append(comment[name]) - - return tuple(row) - - -# conf = sc._conf.setAll([('spark.executor.memory', '20g'), ('spark.app.name', 'extract_reddit_timeline'), ('spark.executor.cores', '26'), ('spark.cores.max', '26'), ('spark.driver.memory','84g'),('spark.driver.maxResultSize','0'),('spark.local.dir','/gscratch/comdata/spark_tmp')]) - -sqlContext = pyspark.SQLContext(sc) - -comments = sc.textFile(globstr) - -schema = StructType().add("id", StringType(), True) -schema = schema.add("subreddit", StringType(), True) -schema = schema.add("link_id", StringType(), True) -schema = schema.add("parent_id", StringType(), True) -schema = schema.add("created_utc", TimestampType(), True) -schema = schema.add("author", StringType(), True) -schema = schema.add("ups", LongType(), True) -schema = schema.add("downs", LongType(), True) -schema = schema.add("score", LongType(), True) -schema = schema.add("edited", BooleanType(), True) -schema = schema.add("time_edited", TimestampType(), True) -schema = schema.add("subreddit_type", StringType(), True) -schema = schema.add("subreddit_id", StringType(), True) -schema = schema.add("stickied", BooleanType(), True) -schema = schema.add("is_submitter", BooleanType(), True) -schema = schema.add("body", StringType(), True) -schema = schema.add("error", StringType(), True) - -rows = comments.map(lambda c: parse_comment(c, schema.fieldNames())) -#!/usr/bin/env python3 - -df = sqlContext.createDataFrame(rows, schema) - -df = df.withColumn("subreddit_2", f.lower(f.col('subreddit'))) -df = df.drop('subreddit') -df = df.withColumnRenamed('subreddit_2','subreddit') - -df = df.withColumnRenamed("created_utc","CreatedAt") -df = df.withColumn("Month",f.month(f.col("CreatedAt"))) -df = df.withColumn("Year",f.year(f.col("CreatedAt"))) -df = df.withColumn("Day",f.dayofmonth(f.col("CreatedAt"))) -df = df.withColumn("subreddit_hash",f.sha2(f.col("subreddit"), 256)[0:3]) - -# cache so we don't have to extract everythin twice -df = df.cache() - -df2 = df.sort(["subreddit","author","link_id","parent_id","Year","Month","Day"],ascending=True) -df2.write.parquet("/gscratch/comdata/output/reddit_comments_by_subreddit.parquet", partitionBy=["Year",'Month'],mode='overwrite') - -df3 = df.sort(["author","CreatetdAt","subreddit","link_id","parent_id","Year","Month","Day"],ascending=True) -df3.write.parquet("/gscratch/comdata/output/reddit_comments_by_author.parquet", partitionBy=["Year",'Month'],mode='overwrite') diff --git a/comments_2_parquet.sh b/comments_2_parquet.sh new file mode 100755 index 0000000..802cc70 --- /dev/null +++ b/comments_2_parquet.sh @@ -0,0 +1,9 @@ +#!/usr/bin/env bash + +echo "!#/usr/bin/bash" > job_script.sh +echo "source $(pwd)/../bin/activate" >> job_script.sh +echo "python3 $(pwd)/comments_2_parquet_part1.py" >> job_script.sh + +srun -p comdata -A comdata --nodes=1 --mem=120G --time=48:00:00 job_script.sh + +start_spark_and_run.sh 1 $(pwd)/comments_2_parquet_part2.py diff --git a/comments_2_parquet_part1.py b/comments_2_parquet_part1.py new file mode 100755 index 0000000..faea040 --- /dev/null +++ b/comments_2_parquet_part1.py @@ -0,0 +1,92 @@ +#!/usr/bin/env python3 +import json +from datetime import datetime +from multiprocessing import Pool +from itertools import islice +from helper import find_dumps, open_fileset +import pandas as pd +import pyarrow as pa +import pyarrow.parquet as pq + +globstr_base = "/gscratch/comdata/reddit_dumps/comments/RC_20*" + +def parse_comment(comment, names= None): + if names is None: + names = ["id","subreddit","link_id","parent_id","created_utc","author","ups","downs","score","edited","subreddit_type","subreddit_id","stickied","is_submitter","body","error"] + + try: + comment = json.loads(comment) + except json.decoder.JSONDecodeError as e: + print(e) + print(comment) + row = [None for _ in names] + row[-1] = "json.decoder.JSONDecodeError|{0}|{1}".format(e,comment) + return tuple(row) + + row = [] + for name in names: + if name == 'created_utc': + row.append(datetime.fromtimestamp(int(comment['created_utc']),tz=None)) + elif name == 'edited': + val = comment[name] + if type(val) == bool: + row.append(val) + row.append(None) + else: + row.append(True) + row.append(datetime.fromtimestamp(int(val),tz=None)) + elif name == "time_edited": + continue + elif name not in comment: + row.append(None) + + else: + row.append(comment[name]) + + return tuple(row) + + +# conf = sc._conf.setAll([('spark.executor.memory', '20g'), ('spark.app.name', 'extract_reddit_timeline'), ('spark.executor.cores', '26'), ('spark.cores.max', '26'), ('spark.driver.memory','84g'),('spark.driver.maxResultSize','0'),('spark.local.dir','/gscratch/comdata/spark_tmp')]) + +dumpdir = "/gscratch/comdata/raw_data/reddit_dumps/comments" + +files = list(find_dumps(dumpdir, base_pattern="RC_20*.*")) + +pool = Pool(28) + +stream = open_fileset(files) + +N = 100000 + +rows = pool.imap_unordered(parse_comment, stream, chunksize=int(N/28)) + +schema = pa.schema([ + pa.field('id', pa.string(), nullable=True), + pa.field('subreddit', pa.string(), nullable=True), + pa.field('link_id', pa.string(), nullable=True), + pa.field('parent_id', pa.string(), nullable=True), + pa.field('created_utc', pa.timestamp('ms'), nullable=True), + pa.field('author', pa.string(), nullable=True), + pa.field('ups', pa.int64(), nullable=True), + pa.field('downs', pa.int64(), nullable=True), + pa.field('score', pa.int64(), nullable=True), + pa.field('edited', pa.bool_(), nullable=True), + pa.field('time_edited', pa.timestamp('ms'), nullable=True), + pa.field('subreddit_type', pa.string(), nullable=True), + pa.field('subreddit_id', pa.string(), nullable=True), + pa.field('stickied', pa.bool_(), nullable=True), + pa.field('is_submitter', pa.bool_(), nullable=True), + pa.field('body', pa.string(), nullable=True), + pa.field('error', pa.string(), nullable=True), +]) + +with pq.ParquetWriter("/gscratch/comdata/output/reddit_comments.parquet_temp",schema=schema,compression='snappy',flavor='spark') as writer: + while True: + chunk = islice(rows,N) + pddf = pd.DataFrame(chunk, columns=schema.names) + table = pa.Table.from_pandas(pddf,schema=schema) + if table.shape[0] == 0: + break + writer.write_table(table) + + writer.close() diff --git a/comments_2_parquet_part2.py b/comments_2_parquet_part2.py new file mode 100755 index 0000000..7b17251 --- /dev/null +++ b/comments_2_parquet_part2.py @@ -0,0 +1,29 @@ +#!/usr/bin/env python3 + +# spark script to make sorted, and partitioned parquet files + +from pyspark.sql import functions as f +from pyspark.sql import SparkSession + +spark = SparkSession.builder.getOrCreate() + +df = spark.read.parquet("/gscratch/comdata/output/reddit_comments.parquet_temp2") + +df = df.withColumn("subreddit_2", f.lower(f.col('subreddit'))) +df = df.drop('subreddit') +df = df.withColumnRenamed('subreddit_2','subreddit') + +df = df.withColumnRenamed("created_utc","CreatedAt") +df = df.withColumn("Month",f.month(f.col("CreatedAt"))) +df = df.withColumn("Year",f.year(f.col("CreatedAt"))) +df = df.withColumn("Day",f.dayofmonth(f.col("CreatedAt"))) + +df = df.repartition('subreddit') +df2 = df.sort(["subreddit","CreatedAt","link_id","parent_id","Year","Month","Day"],ascending=True) +df2 = df2.sortWithinPartitions(["subreddit","CreatedAt","link_id","parent_id","Year","Month","Day"],ascending=True) +df2.write.parquet("/gscratch/comdata/output/reddit_comments_by_subreddit.parquet", mode='overwrite', compression='snappy') + +df = df.repartition('author') +df3 = df.sort(["author","CreatedAt","subreddit","link_id","parent_id","Year","Month","Day"],ascending=True) +df3 = df3.sortWithinPartitions(["author","CreatedAt","subreddit","link_id","parent_id","Year","Month","Day"],ascending=True) +df3.write.parquet("/gscratch/comdata/output/reddit_comments_by_author.parquet", mode='overwrite') diff --git a/helper.py b/helper.py new file mode 100644 index 0000000..4dc6210 --- /dev/null +++ b/helper.py @@ -0,0 +1,57 @@ +from subprocess import Popen, PIPE +import re +from collections import defaultdict +from os import path +import glob + +def find_dumps(dumpdir, base_pattern): + + files = glob.glob(path.join(dumpdir,base_pattern)) + + # build a dictionary of possible extensions for each dump + dumpext = defaultdict(list) + for fpath in files: + fname, ext = path.splitext(fpath) + dumpext[fname].append(ext) + + ext_priority = ['.zst','.xz','.bz2'] + + for base, exts in dumpext.items(): + found = False + if len(exts) == 1: + yield base + exts[0] + found = True + else: + for ext in ext_priority: + if ext in exts: + yield base + ext + found = True + assert(found == True) + +def open_fileset(files): + for fh in files: + print(fh) + lines = open_input_file(fh) + for line in lines: + yield line + +def open_input_file(input_filename): + if re.match(r'.*\.7z$', input_filename): + cmd = ["7za", "x", "-so", input_filename, '*'] + elif re.match(r'.*\.gz$', input_filename): + cmd = ["zcat", input_filename] + elif re.match(r'.*\.bz2$', input_filename): + cmd = ["bzcat", "-dk", input_filename] + elif re.match(r'.*\.bz', input_filename): + cmd = ["bzcat", "-dk", input_filename] + elif re.match(r'.*\.xz', input_filename): + cmd = ["xzcat",'-dk', '-T 20',input_filename] + elif re.match(r'.*\.zst',input_filename): + cmd = ['zstd','-dck', input_filename] + try: + input_file = Popen(cmd, stdout=PIPE).stdout + except NameError as e: + print(e) + input_file = open(input_filename, 'r') + return input_file + diff --git a/submissions_2_parquet.sh b/submissions_2_parquet.sh index d1c6bce..4ec4354 100644 --- a/submissions_2_parquet.sh +++ b/submissions_2_parquet.sh @@ -1,8 +1,10 @@ #!/usr/bin/env bash -# part2 should be run on one ore more spark nodes +echo "!#/usr/bin/bash" > job_script.sh +echo "source $(pwd)/../bin/activate" >> job_script.sh +echo "python3 $(pwd)/submissions_2_parquet_part1.py" >> job_script.sh -./submissions_2_parquet_part1.py +srun -p comdata -A comdata --nodes=1 --mem=120G --time=48:00:00 job_script.sh start_spark_and_run.sh 1 $(pwd)/submissions_2_parquet_part2.py diff --git a/submissions_2_parquet_part1.py b/submissions_2_parquet_part1.py index 10bb5f0..131391b 100755 --- a/submissions_2_parquet_part1.py +++ b/submissions_2_parquet_part1.py @@ -4,75 +4,14 @@ # 1. from gz to arrow parquet (this script) # 2. from arrow parquet to spark parquet (submissions_2_parquet_part2.py) -from collections import defaultdict -from os import path -import glob import json -import re from datetime import datetime -from subprocess import Popen, PIPE -from multiprocessing import Pool, SimpleQueue - -dumpdir = "/gscratch/comdata/raw_data/reddit_dumps/submissions" - -def find_json_files(dumpdir): - base_pattern = "RS_20*.*" - - files = glob.glob(path.join(dumpdir,base_pattern)) - - # build a dictionary of possible extensions for each dump - dumpext = defaultdict(list) - for fpath in files: - fname, ext = path.splitext(fpath) - dumpext[fname].append(ext) - - ext_priority = ['.zst','.xz','.bz2'] - - for base, exts in dumpext.items(): - found = False - if len(exts) == 1: - yield base + exts[0] - found = True - else: - for ext in ext_priority: - if ext in exts: - yield base + ext - found = True - assert(found == True) - -files = list(find_json_files(dumpdir)) - -def read_file(fh): - lines = open_input_file(fh) - for line in lines: - yield line - -def open_fileset(files): - for fh in files: - print(fh) - lines = open_input_file(fh) - for line in lines: - yield line - -def open_input_file(input_filename): - if re.match(r'.*\.7z$', input_filename): - cmd = ["7za", "x", "-so", input_filename, '*'] - elif re.match(r'.*\.gz$', input_filename): - cmd = ["zcat", input_filename] - elif re.match(r'.*\.bz2$', input_filename): - cmd = ["bzcat", "-dk", input_filename] - elif re.match(r'.*\.bz', input_filename): - cmd = ["bzcat", "-dk", input_filename] - elif re.match(r'.*\.xz', input_filename): - cmd = ["xzcat",'-dk', '-T 20',input_filename] - elif re.match(r'.*\.zst',input_filename): - cmd = ['zstd','-dck', input_filename] - try: - input_file = Popen(cmd, stdout=PIPE).stdout - except NameError as e: - print(e) - input_file = open(input_filename, 'r') - return input_file +from multiprocessing import Pool +from itertools import islice +from helper import find_dumps, open_fileset +import pandas as pd +import pyarrow as pa +import pyarrow.parquet as pq def parse_submission(post, names = None): @@ -116,6 +55,10 @@ def parse_submission(post, names = None): row.append(post[name]) return tuple(row) +dumpdir = "/gscratch/comdata/raw_data/reddit_dumps/submissions" + +files = list(find_dumps(dumpdir)) + pool = Pool(28) stream = open_fileset(files) @@ -124,11 +67,6 @@ N = 100000 rows = pool.imap_unordered(parse_submission, stream, chunksize=int(N/28)) -from itertools import islice -import pandas as pd -import pyarrow as pa -import pyarrow.parquet as pq - schema = pa.schema([ pa.field('id', pa.string(),nullable=True), pa.field('author', pa.string(),nullable=True), diff --git a/submissions_2_parquet_part2.py b/submissions_2_parquet_part2.py index 1708548..bd538e2 100644 --- a/submissions_2_parquet_part2.py +++ b/submissions_2_parquet_part2.py @@ -2,12 +2,8 @@ # spark script to make sorted, and partitioned parquet files -import pyspark from pyspark.sql import functions as f -from pyspark.sql.types import * -from pyspark import SparkConf, SparkContext -from pyspark.sql import SparkSession, SQLContext -import os +from pyspark.sql import SparkSession spark = SparkSession.builder.getOrCreate() @@ -31,12 +27,16 @@ df = df.withColumn("Day",f.dayofmonth(f.col("CreatedAt"))) df = df.withColumn("subreddit_hash",f.sha2(f.col("subreddit"), 256)[0:3]) # next we gotta resort it all. -df2 = df.sort(["subreddit","author","id","Year","Month","Day"],ascending=True) +df = df.repartition("subreddit") +df2 = df.sort(["subreddit","CreatedAt","id"],ascending=True) +df2 = df.sortWithinPartitions(["subreddit","CreatedAt","id"],ascending=True) df2.write.parquet("/gscratch/comdata/output/reddit_submissions_by_subreddit.parquet", partitionBy=["Year",'Month'], mode='overwrite') # # we also want to have parquet files sorted by author then reddit. -df3 = df.sort(["author","CreatedAt","subreddit","id","Year","Month","Day"],ascending=True) +df = df.repartition("author") +df3 = df.sort(["author","CreatedAt","id"],ascending=True) +df3 = df.sortWithinPartitions(["author","CreatedAt","id"],ascending=True) df3.write.parquet("/gscratch/comdata/output/reddit_submissions_by_author.parquet", partitionBy=["Year",'Month'], mode='overwrite') os.remove("/gscratch/comdata/output/reddit_submissions.parquet_temp")