From: Nate E TeBlunthuis Date: Tue, 7 Jul 2020 07:57:05 +0000 (-0700) Subject: Script for example of streaming pyarrow. X-Git-Url: https://code.communitydata.science/cdsc_reddit.git/commitdiff_plain/4efd72a916652199c45f6fcf99cdd3de016f4530 Script for example of streaming pyarrow. --- diff --git a/examples/pyarrow_streaming.py b/examples/pyarrow_streaming.py new file mode 100644 index 0000000..512e63f --- /dev/null +++ b/examples/pyarrow_streaming.py @@ -0,0 +1,32 @@ +import pyarrow.dataset as ds +from itertools import chain, groupby, islice + +# A pyarrow dataset abstracts reading, writing, or filtering a parquet file. It does not read dataa into memory. +#dataset = ds.dataset(pathlib.Path('/gscratch/comdata/output/reddit_submissions_by_subreddit.parquet/'), format='parquet', partitioning='hive') +dataset = ds.dataset('/gscratch/comdata/output/reddit_submissions_by_author.parquet', format='parquet', partitioning='hive') + +# let's get all the comments to two subreddits: +subreddits_to_pull = ['seattlewa','seattle'] + +# instead of loading the data into a pandas dataframe all at once we can stream it. This lets us start working with it while it is read. +scan_tasks = dataset.scan(filter = ds.field('subreddit').isin(subreddits_to_pull), columns=['id','subreddit','CreatedAt','author','ups','downs','score','subreddit_id','stickied','title','url','is_self','selftext']) + +# simple function to execute scantasks and create a stream of pydict rows +def execute_scan_task(st): + # an executed scan task yields an iterator of record_batches + def unroll_record_batch(rb): + df = rb.to_pandas() + return df.itertuples() + + for rb in st.execute(): + yield unroll_record_batch(rb) + + +# now we just need to flatten and we have our iterator +row_iter = chain.from_iterable(chain.from_iterable(map(lambda st: execute_scan_task(st), scan_tasks))) + +# now we can use python's groupby function to read one author at a time +# note that the same author can appear more than once since the record batches may not be in the correct order. +author_submissions = groupby(row_iter, lambda row: row.author) +for auth, posts in author_submissions: + print(f"{auth} has {len(list(posts))} posts")