setwd("~/online_communities/coldcallbot/data/") library(data.table) ################################################ ## LOAD call_list TSV data ################################################ call.list <- do.call("rbind", lapply(list.files(".", pattern="^call_list-.*tsv$"), function (x) {read.delim(x, stringsAsFactors=FALSE)[,1:4]})) colnames(call.list) <- gsub("_", ".", colnames(call.list)) table(call.list$unique.name[call.list$answered]) ## drop calls where the person wasn't present call.list.full <- call.list call.list[!call.list$answered,] call.list <- call.list[call.list$answered,] ## show the distribution of assessments prop.table(table(call.list$assessment)) call.counts <- data.frame(table(call.list$unique.name)) colnames(call.counts) <- c("unique.name", "num.calls") ## create list of folks who are missing in class w/o reporting it absence.data.cols <- c("unique.name", "date.absent", "reported") missing.in.class <- call.list.full[!call.list.full$answered, c("unique.name", "timestamp")] missing.in.class$date.absent <- as.Date(missing.in.class$timestamp) missing.in.class$reported <- FALSE missing.in.class <- missing.in.class[,absence.data.cols] missing.in.class <- unique(missing.in.class) ################################################ ## LOAD absence data TSV data ################################################ absence.google <- read.delim("absence_poll_data.tsv") colnames(absence.google) <- c("timestamp", "unique.name", "date.absent") absence.google$date.absent <- as.Date(absence.google$date.absent, format="%m/%d/%Y") absence.google$reported <- TRUE absence.google <- absence.google[,absence.data.cols] absence.google <- unique(absence.google) ## combine the two absence lists and then create a unique subset absence <- rbind(missing.in.class[,absence.data.cols], absence.google[,absence.data.cols]) ## these are people that show up in both lists (i.e., probably they ## submitted too late but it's worth verifying before we penalize ## them. i'd actually remove them from the absence sheet to suppress ## this error absence[duplicated(absence[,1:2]),] absence <- absence[!duplicated(absence[,1:2]),] ## print total questions asked and absences absence.count <- data.frame(table(unique(absence[,c("unique.name", "date.absent")])[,"unique.name"])) colnames(absence.count) <- c("unique.name", "absences") ## load up the full class list gs <- read.delim("student_information.tsv") d <- gs[,c("Your.UW.student.number", "Name.you.d.like.to.go.by.in.class")] colnames(d) <- c("unique.name", "short.name") ## merge in the call counts d <- merge(d, call.counts, all.x=TRUE, all.y=FALSE, by="unique.name") d <- merge(d, absence.count, by="unique.name", all.x=TRUE, all.y=FALSE) d ## set anything that's missing to zero d$num.calls[is.na(d$num.calls)] <- 0 d$absences[is.na(d$absences)] <- 0 ################################################ ## list people who have been absent often or called on a lot ################################################ ## list students sorted in terms of (a) absences and (b) prev questions d[sort.list(d$absences),] d[sort.list(d$num.calls, decreasing=TRUE),] ################################################ ## build visualizations ################################################ library(ggplot2) color.gradient <- scales::seq_gradient_pal("yellow", "magenta", "Lab")(seq(0,1,length.out=range(d$absences)[2]+1)) table(d$num.calls, d$absences) ggplot(data=d) + aes(x=as.factor(num.calls), y=absences) + geom_violin() ## png("questions_absence_histogram_combined.png", units="px", width=600, height=400) ggplot(d) + aes(x=as.factor(num.calls), fill=as.factor(absences)) + geom_bar(color="black") + stat_count() + scale_x_discrete("Number of questions asked") + scale_y_continuous("Number of students") + ##scale_fill_brewer("Absences", palette="Blues") + scale_fill_manual("Absences", values=color.gradient) + theme_bw() ## dev.off() absence.labeller <- function (df) { lapply(df, function (x) { paste("Absences:", x) }) } ## png("questions_absence_histogram_facets.png", units="px", width=600, height=400) ggplot(d) + aes(x=as.factor(num.calls)) + geom_bar() + stat_count() + scale_x_discrete("Number of questions asked as of 2020-02-12") + scale_y_continuous("Number of students") + theme_bw() + facet_wrap(.~absences, ncol=5, labeller="absence.labeller")