X-Git-Url: https://code.communitydata.science/coldcallbot-discord.git/blobdiff_plain/3bd4c9c2a60797346868989dd63341e48e87da70..360a7e8ee059d7060c373abb453e29dba8cfc015:/assessment_and_tracking/track_participation.R?ds=sidebyside diff --git a/assessment_and_tracking/track_participation.R b/assessment_and_tracking/track_participation.R index 28b8a4e..37898e7 100644 --- a/assessment_and_tracking/track_participation.R +++ b/assessment_and_tracking/track_participation.R @@ -1,25 +1,127 @@ setwd("~/online_communities/coldcallbot/data/") -library(ggplot2) library(data.table) -gs <- read.delim("student_information.tsv") -d <- gs[,c(2,4)] -colnames(d) <- c("student.num", "unique.name") +################################################ +## LOAD call_list TSV data +################################################ call.list <- do.call("rbind", lapply(list.files(".", pattern="^call_list-.*tsv$"), function (x) {read.delim(x, stringsAsFactors=FALSE)[,1:4]})) colnames(call.list) <- gsub("_", ".", colnames(call.list)) -table(call.list$unique_name[call.list$answered]) +table(call.list$unique.name[call.list$answered]) ## drop calls where the person wasn't present call.list.full <- call.list call.list[!call.list$answered,] call.list <- call.list[call.list$answered,] +## show the distribution of assessments +prop.table(table(call.list$assessment)) + call.counts <- data.frame(table(call.list$unique.name)) colnames(call.counts) <- c("unique.name", "num.calls") -d <- merge(d, call.counts, all.x=TRUE, all.y=TRUE, by="unique.name"); d +## create list of folks who are missing in class w/o reporting it +absence.data.cols <- c("unique.name", "date.absent", "reported") + +missing.in.class <- call.list.full[!call.list.full$answered, + c("unique.name", "timestamp")] +missing.in.class$date.absent <- as.Date(missing.in.class$timestamp) +missing.in.class$reported <- FALSE +missing.in.class <- missing.in.class[,absence.data.cols] +missing.in.class <- unique(missing.in.class) + +################################################ +## LOAD absence data TSV data +################################################ + +absence.google <- read.delim("absence_poll_data.tsv") +colnames(absence.google) <- c("timestamp", "unique.name", "date.absent") +absence.google$date.absent <- as.Date(absence.google$date.absent, format="%m/%d/%Y") +absence.google$reported <- TRUE +absence.google <- absence.google[,absence.data.cols] +absence.google <- unique(absence.google) + +## combine the two absence lists and then create a unique subset +absence <- rbind(missing.in.class[,absence.data.cols], + absence.google[,absence.data.cols]) + +## these are people that show up in both lists (i.e., probably they +## submitted too late but it's worth verifying before we penalize +## them. i'd actually remove them from the absence sheet to suppress +## this error +absence[duplicated(absence[,1:2]),] +absence <- absence[!duplicated(absence[,1:2]),] + +## print total questions asked and absences +absence.count <- data.frame(table(unique(absence[,c("unique.name", "date.absent")])[,"unique.name"])) +colnames(absence.count) <- c("unique.name", "absences") + + +## load up the full class list +gs <- read.delim("student_information.tsv") +d <- gs[,c("Your.UW.student.number", "Name.you.d.like.to.go.by.in.class")] +colnames(d) <- c("unique.name", "short.name") + +## merge in the call counts +d <- merge(d, call.counts, all.x=TRUE, all.y=FALSE, by="unique.name") +d <- merge(d, absence.count, by="unique.name", all.x=TRUE, all.y=FALSE) + +d + +## set anything that's missing to zero +d$num.calls[is.na(d$num.calls)] <- 0 +d$absences[is.na(d$absences)] <- 0 + +################################################ +## list people who have been absent often or called on a lot +################################################ + + +## list students sorted in terms of (a) absences and (b) prev questions +d[sort.list(d$absences),] + +d[sort.list(d$num.calls, decreasing=TRUE),] + +################################################ +## build visualizations +################################################ + + +library(ggplot2) + +color.gradient <- scales::seq_gradient_pal("yellow", "magenta", "Lab")(seq(0,1,length.out=range(d$absences)[2]+1)) + +table(d$num.calls, d$absences) + +png("questions_absence_histogram_combined.png", units="px", width=600, height=400) + +ggplot(d) + + aes(x=as.factor(num.calls), fill=as.factor(absences)) + + geom_bar(color="black") + + stat_count() + + scale_x_discrete("Number of questions answered") + + scale_y_continuous("Number of students") + + ##scale_fill_brewer("Absences", palette="Blues") + + scale_fill_manual("Absences", values=color.gradient) + + theme_bw() + +dev.off() + +absence.labeller <- function (df) { + lapply(df, function (x) { paste("Absences:", x) }) +} + +## png("questions_absence_histogram_facets.png", units="px", width=600, height=400) + +## ggplot(d) + +## aes(x=as.factor(num.calls)) + +## geom_bar() + +## stat_count() + +## scale_x_discrete("Number of questions answered") + +## scale_y_continuous("Number of students") + +## theme_bw() + +## facet_wrap(.~absences, ncol=5, labeller="absence.labeller")