X-Git-Url: https://code.communitydata.science/coldcallbot-discord.git/blobdiff_plain/92e65de7715056ee39c923e1d51fb8c777e64afd..da93d3fd56f78a67c1f109f4c72f3fcf35fbc102:/assessment_and_tracking/compute_final_case_grades.R diff --git a/assessment_and_tracking/compute_final_case_grades.R b/assessment_and_tracking/compute_final_case_grades.R index b26270b..93d6d1f 100644 --- a/assessment_and_tracking/compute_final_case_grades.R +++ b/assessment_and_tracking/compute_final_case_grades.R @@ -1,72 +1,148 @@ ## load in the data ################################# +myuw <- read.csv("../data/2022_winter_COM_481_A_students.csv", stringsAsFactors=FALSE) -myuw <- read.csv("myuw-COMMLD_570_A_spring_2021_students.csv", stringsAsFactors=FALSE) +current.dir <- getwd() +source("../assessment_and_tracking/track_participation.R") +setwd(current.dir) + +rownames(d) <- d$unique.name +call.list$timestamp <- as.Date(call.list$timestamp) ## class-level variables -question.grades <- c("GOOD"=100, "FAIR"=100-(50/3.3), "WEAK"=100-(50/(3.3)*2)) +gpa.point.value <- 50/(4 - 0.7) +question.grades <- c("PLUS"=100, "CHECK"=100-gpa.point.value, "MINUS"=100-(gpa.point.value*2)) +missed.question.penalty <- gpa.point.value * 0.2 ## 1/5 of a full point on the GPA scale -source("../assessment_and_tracking/track_participation.R") -setwd("case_grades") +## inspect set the absence threashold +ggplot(d) + aes(x=absences) + geom_histogram(binwidth=1, fill="white",color="black") +absence.threshold <- median(d$absences) -rownames(d) <- d$unique.name + +## inspect and set the questions cutoff +## questions.cutoff <- median(d$num.calls) +## median(d$num.calls) +## questions.cutoff <- nrow(call.list) / nrow(d) ## TODO talk about this +## this is the 95% percentile based on simulation in simulation.R +questions.cutoff <- 4 ## show the distribution of assessments table(call.list$assessment) prop.table(table(call.list$assessment)) -table(call.list$answered) -prop.table(table(call.list$answered)) + +table(call.list.full$answered) +prop.table(table(call.list.full$answered)) total.questions.asked <- nrow(call.list) -## generate grades -########################################################## +## find out how man questions folks have present/absent for. +## +## NOTE: this is currently only for informational purposes and is NOT +## being used to compute grants in any way. +######################################################################## +calls.per.day <- data.frame(day=as.Date(names(table(call.list$timestamp))), + questions.asked=as.numeric(table(call.list$timestamp))) + +## function to return the numbers of calls present for or zero if they +## were absent +calls.for.student.day <- function (day, student.id) { + if (any(absence$unique.name == student.id & absence$date.absent == day)) { + return(0) + } else { + return(calls.per.day$questions.asked[calls.per.day$day == day]) + } +} + +compute.questions.present.for.student <- function (student.id) { + sum(unlist(lapply(unique(calls.per.day$day), calls.for.student.day, student.id))) +} -d$part.grade <- NA +## create new column with number of questions present +d$q.present <- unlist(lapply(d$unique.name, compute.questions.present.for.student)) +d$prop.asked <- d$num.calls / d$q.present + +## generate statistics using these new variables +prop.asks.quantiles <- quantile(d$prop.asked, probs=seq(0,1, 0.01)) +prop.asks.quantiles <- prop.asks.quantiles[!duplicated(prop.asks.quantiles)] + +d$prop.asked.quant <- cut(d$prop.asked, right=FALSE, breaks=c(prop.asks.quantiles, 1), + labels=names(prop.asks.quantiles)[1:(length(prop.asks.quantiles))]) + +## generate grades +######################################################################## ## print the median number of questions for (a) everybody and (b) ## people that have been present 75% of the time median(d$num.calls) -questions.cutoff <- median(d$num.calls) - ## helper function to generate average grade minus number of missing gen.part.grade <- function (x.unique.name) { q.scores <- question.grades[call.list$assessment[call.list$unique.name == x.unique.name]] base.score <- mean(q.scores, na.rm=TRUE) ## number of missing days - # missing.days <- nrow(missing.in.class[missing.in.class$unique.name == x.unique.name,]) + missing.in.class.days <- nrow(missing.in.class[missing.in.class$unique.name == x.unique.name,]) ## return the final score data.frame(unique.name=x.unique.name, - part.grade=(base.score)) + base.grade=base.score, + missing.in.class.days=missing.in.class.days) } +## create the base grades which do NOT include missing questions tmp <- do.call("rbind", lapply(d$unique.name, gen.part.grade)) +d <- merge(d, tmp) +rownames(d) <- d$unique.name +d$part.grade <- d$base.grade -d[as.character(tmp$unique.name), "part.grade"] <- tmp$part.grade +## first we handle the zeros +## step 1: first double check the people who have zeros and ensure that they didn't "just" get unlucky" +d[d$num.calls == 0,] -## generate the baseline participation grades as per the process above +## set those people to 0 :( +d$part.grade[d$num.calls == 0] <- 0 -## map part grades back to 4.0 letter scale and points -d$part.4point <-round((d$part.grade / (50/3.3)) - 2.6, 2) +## step 2: identify the people who were were not asked "enough" +## questions but were unlucky/lucky + +## first this just prints out are the people were were not called +## simply because they got unlucky +d[d$num.calls < questions.cutoff & d$absences < absence.threshold,] + +## these are the people were were not called simply unlucky (i.e., +## they were not in class very often) +penalized.unique.names <- d$unique.name[d$num.calls < questions.cutoff & d$absences > absence.threshold] +d[d$unique.name %in% penalized.unique.names,] + +## now add "zeros" for every questions that is below the normal +d[as.character(penalized.unique.names),"part.grade"] <- ( + (d[as.character(penalized.unique.names),"num.calls"] * d[as.character(penalized.unique.names),"part.grade"]) + / questions.cutoff) -d[sort.list(d$part.4point),] +d[as.character(penalized.unique.names),] +## apply the penality for number of days we called on them and they were gone +d$part.grade <- d$part.grade - d$missing.in.class.days * missed.question.penalty -## writing out data +## TODO ensure this is right. i think it is +## map part grades back to 4.0 letter scale and points +d$part.4point <- round((d$part.grade / gpa.point.value) - ((100 / gpa.point.value) - 4), 2) + +d[sort.list(d$part.4point, decreasing=TRUE), + c("unique.name", "short.name", "num.calls", "absences", "part.4point")] + +## writing out data to CSV d.print <- merge(d, myuw[,c("StudentNo", "FirstName", "LastName", "UWNetID")], - by.x="student.num", by.y="StudentNo") -write.csv(d.print, file="final_participation_grades.csv") - -## library(rmarkdown) - -## for (x.unique.name in d$unique.name) { -## render(input="../../assessment_and_tracking/student_report_template.Rmd", -## output_format="html_document", -## output_file=paste("../data/case_grades/student_reports/", -## d.print$UWNetID[d.print$unique.name == x.unique.name], -## sep="")) -## } + by.x="unique.name", by.y="StudentNo") +write.csv(d.print, file="../data/final_participation_grades.csv") + +library(rmarkdown) + +for (id in d$unique.name) { + render(input="student_report_template.Rmd", + output_format="html_document", + output_file=paste("../data/case_grades/", + d.print$unique.name[d.print$unique.name == id], + sep="")) +}