From: Benjamin Mako Hill Date: Tue, 7 Oct 2025 22:37:08 +0000 (-0700) Subject: change assessment code for BSOC 2024 X-Git-Url: https://code.communitydata.science/coldcallbot-discord.git/commitdiff_plain/f6e45044919f1a80cc2ce90257d7f129e5f693d3?hp=f7270293f2febd56d1570fef67085223d5d91d33 change assessment code for BSOC 2024 --- diff --git a/assessment_and_tracking/compute_final_case_grades.R b/assessment_and_tracking/compute_final_case_grades.R index 93d6d1f..e355052 100644 --- a/assessment_and_tracking/compute_final_case_grades.R +++ b/assessment_and_tracking/compute_final_case_grades.R @@ -1,6 +1,6 @@ ## load in the data ################################# -myuw <- read.csv("../data/2022_winter_COM_481_A_students.csv", stringsAsFactors=FALSE) +myuw <- read.csv("../data/2024_autumn_COMMLD_570_A_joint_students.csv", stringsAsFactors=FALSE) current.dir <- getwd() source("../assessment_and_tracking/track_participation.R") @@ -11,20 +11,20 @@ call.list$timestamp <- as.Date(call.list$timestamp) ## class-level variables gpa.point.value <- 50/(4 - 0.7) -question.grades <- c("PLUS"=100, "CHECK"=100-gpa.point.value, "MINUS"=100-(gpa.point.value*2)) +## question.grades <- c("GOOD"=100, "FAIR"=100-gpa.point.value, "BAD"=100-(gpa.point.value*2)) +question.grades <- c("GOOD"=100, "SATISFACTORY"=100-gpa.point.value, "POOR"=100-(gpa.point.value*2), "NO MEANINGFUL ANSWER"=0) missed.question.penalty <- gpa.point.value * 0.2 ## 1/5 of a full point on the GPA scale ## inspect set the absence threashold ggplot(d) + aes(x=absences) + geom_histogram(binwidth=1, fill="white",color="black") absence.threshold <- median(d$absences) - ## inspect and set the questions cutoff ## questions.cutoff <- median(d$num.calls) ## median(d$num.calls) ## questions.cutoff <- nrow(call.list) / nrow(d) ## TODO talk about this ## this is the 95% percentile based on simulation in simulation.R -questions.cutoff <- 4 +questions.cutoff <- 15 ## show the distribution of assessments table(call.list$assessment) @@ -78,6 +78,7 @@ median(d$num.calls) ## helper function to generate average grade minus number of missing gen.part.grade <- function (x.unique.name) { q.scores <- question.grades[call.list$assessment[call.list$unique.name == x.unique.name]] + print(q.scores) base.score <- mean(q.scores, na.rm=TRUE) ## number of missing days @@ -89,7 +90,6 @@ gen.part.grade <- function (x.unique.name) { missing.in.class.days=missing.in.class.days) } - ## create the base grades which do NOT include missing questions tmp <- do.call("rbind", lapply(d$unique.name, gen.part.grade)) d <- merge(d, tmp)