X-Git-Url: https://code.communitydata.science/covid19.git/blobdiff_plain/576d882c04b4cc784cd5a6296cb3c3e5aa596d39..refs/remotes/gh-cdsc/master:/wikipedia/example_analysis/pageview_example.R?ds=inline diff --git a/wikipedia/example_analysis/pageview_example.R b/wikipedia/example_analysis/pageview_example.R index fb5359a..8d40f00 100644 --- a/wikipedia/example_analysis/pageview_example.R +++ b/wikipedia/example_analysis/pageview_example.R @@ -9,34 +9,22 @@ library(scales) ### Import and cleanup one datafile from the observatory DataURL <- - url("https://covid19.communitydata.science/datasets/wikipedia/digobs_covid19-wikipedia-enwiki_dailyviews-20200401.tsv") + url("https://covid19.communitydata.science/datasets/wikipedia/digobs_covid19-wikipedia-enwiki_dailyviews-20200101.tsv") views <- read.table(DataURL, sep="\t", header=TRUE, stringsAsFactors=FALSE) -### Alternatively, uncomment and run if working locally with full git -### tree -### -### Identify data source directory and file -## DataDir <- ("../data/") -## DataFile <- ("dailyviews2020032600.tsv") - -## related.searches.top <- read.table(paste(DataDir,DataFile, sep=""), -## sep="\t", header=TRUE, -## stringsAsFactors=FALSE) - ### Cleanup and do the grouping with functions from the Tidyverse ### (see https://www.tidyverse.org for more info) views <- views[,c("article", "project", "timestamp", "views")] -views$timestamp <- fct_explicit_na(views$timestamp) +views$timestamp <- fct_explicit_na(as.character(views$timestamp)) ### Sorts and groups at the same time views.by.proj.date <- arrange(group_by(views, project, timestamp), desc(views)) - ### Export just the top 10 by pageviews write.table(head(views.by.proj.date, 10), file="output/top10_views_by_project_date.csv", sep=",",