]> code.communitydata.science - ml_measurement_error_public.git/blob - civil_comments/design_example.R
Make summarize estimator group correctly for robustness checks.
[ml_measurement_error_public.git] / civil_comments / design_example.R
1 set.seed(1111)
2 source('load_perspective_data.R')
3 ## how accurate are the classifiers?
4
5 ## the API claims that these scores are "probabilities"
6 ## say we care about the model of the classification, not the probability
7
8 ## toxicity error is weakly correlated pearson's R = 0.1 with both "white" and "black".
9
10 ## compare regressions with "white" or "black" as the outcome and "toxicity_coded" or "toxicity_pred" as a predictor.
11 ## here's a great example with presumambly non-differential error: about what identities is toxicity found humorous?
12 ## a bunch of stars reappear when you used the ground-truth data instead of the predictions.
13 ## pro/con of this example: will have to implement family='poisson'.
14 ## shouldn't be that bad though haha.
15 cortab['toxicity_error',]
16 cortab['toxicity_error','funny']
17 cortab['toxicity_coded',]
18 cortab['identity_error',]
19 cortab['white',]
20
21 ## here's a simple example, is P(white | toxic and mentally ill) > P(white | toxic or mentally ill). Are people who discuss their mental illness in a toxic way more likely to be white compared to those who just talk about their mental illness or are toxic? 
22 summary(glm(white ~ toxicity_coded*psychiatric_or_mental_illness, data = df, family=binomial(link='logit')))
23
24 summary(glm(white ~ toxicity_pred*psychiatric_or_mental_illness, data = df, family=binomial(link='logit')))
25
26 summary(glm(white ~ toxicity_coded*male, data = df, family=binomial(link='logit')))
27
28 summary(glm(white ~ toxicity_pred*male, data = df, family=binomial(link='logit')))
29
30 summary(glm(toxicity_coded ~ white*psychiatric_or_mental_illness, data = df, family=binomial(link='logit')))
31
32 summary(glm(toxicity_pred ~ white*psychiatric_or_mental_illness, data = df, family=binomial(link='logit')))
33
34
35 ## another simple enough example: is P(toxic | funny and white) > P(toxic | funny nand white)? Or, are funny comments more toxic when people disclose that they are white?
36
37 summary(glm(toxicity_pred ~ funny*white, data=df, family=binomial(link='logit')))
38 summary(glm(toxicity_coded ~ funny*white, data=df, family=binomial(link='logit')))
39
40 source("../simulations/measerr_methods.R")
41                                                                                        
42 saved_model_file <- "measerr_model_tox.eq.funny.cross.white.RDS"
43 overwrite_model <- TRUE 
44
45 # it works so far with a 20% and 15% sample. Smaller is better. let's try a 10% sample again. It didn't work out. We'll go forward with a 15% sample.
46 df_measerr_method <- copy(df)[sample(1:.N, 0.05 * .N), toxicity_coded_1 := toxicity_coded]
47 df_measerr_method <- df_measerr_method[,toxicity_coded := toxicity_coded_1]
48 summary(glm(toxicity_coded ~ funny*white, data=df_measerr_method[!is.na(toxicity_coded)], family=binomial(link='logit')))
49
50 if(!file.exists(saved_model_file) || (overwrite_model == TRUE)){
51     measerr_model <- measerr_mle_dv(df_measerr_method,toxicity_coded ~ funny*white,outcome_family=binomial(link='logit'), proxy_formula=toxicity_pred ~ toxicity_coded*funny*white)
52 saveRDS(measerr_model, saved_model_file)
53 } else {
54     measerr_model <- readRDS(saved_model_file)
55 }
56
57 inv_hessian <- solve(measerr_model$hessian)
58 se <- diag(inv_hessian)
59
60 lm2 <- glm.nb(funny ~ (male + female + transgender + other_gender + heterosexual + bisexual + other_sexual_orientation + christian + jewish + hindu + buddhist + atheist + other_religion + asian + latino + other_race_or_ethnicity + physical_disability + intellectual_or_learning_disability + white + black + psychiatric_or_mental_illness)*toxicity_pred, data = df)
61 m3 <- glm.nb(funny ~ (male + female + transgender + other_gender + heterosexual + bisexual + other_sexual_orientation + christian + jewish + hindu + buddhist + atheist + other_religion + asian + latino + other_race_or_ethnicity + physical_disability + intellectual_or_learning_disability + white + black + psychiatric_or_mental_illness)*toxicity, data = df)
62
63
64 glm(white ~ disagree, data = df, family=binomial(link='logit'))
65
66 ## example with differential error
67
68 glm(white ~ toxicity_coded + toxicity_error, data=df,family=binomial(link='logit'))
69
70 glm(toxicity_coded ~ white, data = df, family=binomial(link='logit'))
71
72 glm(toxicity_pred ~ white, data = df, family=binomial(link='logit'))

Community Data Science Collective || Want to submit a patch?