source("RemembR/R/RemembeR.R") library(arrow) library(data.table) library(ggplot2) library(filelock) library(argparser) parser <- arg_parser("Simulate data and fit corrected models.") parser <- add_argument(parser, "--infile", default="", help="name of the file to read.") parser <- add_argument(parser, "--name", default="", help="The name to safe the data to in the remember file.") args <- parse_args(parser) source("summarize_estimator.R") build_plot_dataset <- function(df){ x.true <- summarize.estimator(df, 'true','x') z.true <- summarize.estimator(df, 'true','z') x.naive <- summarize.estimator(df, 'naive','x') z.naive <- summarize.estimator(df, 'naive','z') x.loa0.feasible <- summarize.estimator(df, 'loa0.feasible','x') z.loa0.feasible <- summarize.estimator(df,'loa0.feasible','z') x.loa0.mle <- summarize.estimator(df, 'loa0.mle', 'x') z.loa0.mle <- summarize.estimator(df, 'loa0.mle', 'z') x.loco.feasible <- summarize.estimator(df, 'loco.feasible', 'x') z.loco.feasible <- summarize.estimator(df, 'loco.feasible', 'z') x.loco.mle <- summarize.estimator(df, 'loco.mle', 'x') z.loco.mle <- summarize.estimator(df, 'loco.mle', 'z') z.loco.amelia <- summarize.estimator(df, 'amelia.full', 'z') x.loco.amelia <- summarize.estimator(df, 'amelia.full', 'x') z.loco.zhang <- summarize.estimator(df, 'zhang', 'z') x.loco.zhang <- summarize.estimator(df, 'zhang', 'x') accuracy <- df[,mean(accuracy)] plot.df <- rbindlist(list(x.true,z.true,x.loa0.feasible,z.loa0.feasible,x.naive,z.naive,x.loa0.mle,z.loa0.mle,x.loco.feasible, z.loco.feasible, z.loco.mle, x.loco.mle, x.loco.amelia, z.loco.amelia, z.loco.zhang, x.loco.zhang),use.names=T) plot.df[,accuracy := accuracy] plot.df <- plot.df[,":="(sd.est=sqrt(var.est)/N.sims)] return(plot.df) } plot.df <- read_feather(args$infile) print(unique(plot.df$N)) # df <- df[apply(df,1,function(x) !any(is.na(x)))] if(!('Bzx' %in% names(plot.df))) plot.df[,Bzx:=NA] if(!('accuracy_imbalance_difference' %in% names(plot.df))) plot.df[,accuracy_imbalance_difference:=NA] unique(plot.df[,'accuracy_imbalance_difference']) #plot.df <- build_plot_dataset(df[accuracy_imbalance_difference==0.1][N==700]) plot.df <- build_plot_dataset(plot.df) change.remember.file("remember_irr.RDS",clear=TRUE) remember(plot.df,args$name)