### EXAMPLE 1: demonstrates how measurement error can lead to a type sign error in a covariate ### What kind of data invalidates fong + tyler? ### Even when you have a good predictor, if it's biased against a covariate you can get the wrong sign. ### Even when you include the proxy variable in the regression. ### But with some ground truth and multiple imputation, you can fix it. library(argparser) library(mecor) library(ggplot2) library(data.table) library(filelock) library(arrow) library(Amelia) library(Zelig) library(predictionError) options(amelia.parallel="no", amelia.ncpus=1) setDTthreads(40) source("simulation_base.R") ## SETUP: ### we want to estimate x -> y; x is MAR ### we have x -> k; k -> w; x -> w is used to predict x via the model w. ### A realistic scenario is that we have an NLP model predicting something like "racial harassment" in social media comments ### The labels x are binary, but the model provides a continuous predictor ### simulation: #### how much power do we get from the model in the first place? (sweeping N and m) #### ## one way to do it is by adding correlation to x.obs and y that isn't in w. ## in other words, the model is missing an important feature of x.obs that's related to y. simulate_data <- function(N, m, B0, Bxy, Bzx, Bzy, seed, y_explained_variance=0.025, prediction_accuracy=0.73, accuracy_imbalance_difference=0.3){ set.seed(seed) # make w and y dependent z <- rbinom(N, 1, 0.5) x <- rbinom(N, 1, Bzx * z + 0.5) y.var.epsilon <- (var(Bzy * z) + var(Bxy *x) + 2*cov(Bzy*z,Bxy*x)) * ((1-y_explained_variance)/y_explained_variance) y.epsilon <- rnorm(N, sd = sqrt(y.var.epsilon)) y <- Bzy * z + Bxy * x + y.epsilon df <- data.table(x=x,y=y,z=z) if(m < N){ df <- df[sample(nrow(df), m), x.obs := x] } else { df <- df[, x.obs := x] } ## px <- mean(x) ## accuracy_imbalance_ratio <- (prediction_accuracy + accuracy_imbalance_difference/2) / (prediction_accuracy - accuracy_imbalance_difference/2) ## # this works because of conditional probability ## accuracy_x0 <- prediction_accuracy / (px*(accuracy_imbalance_ratio) + (1-px)) ## accuracy_x1 <- accuracy_imbalance_ratio * accuracy_x0 ## x0 <- df[x==0]$x ## x1 <- df[x==1]$x ## nx1 <- nrow(df[x==1]) ## nx0 <- nrow(df[x==0]) ## yx0 <- df[x==0]$y ## yx1 <- df[x==1]$y # tranform yz0.1 into a logistic distribution with mean accuracy_z0 ## acc.x0 <- plogis(0.5*scale(yx0) + qlogis(accuracy_x0)) ## acc.x1 <- plogis(1.5*scale(yx1) + qlogis(accuracy_x1)) ## w0x0 <- (1-x0)**2 + (-1)**(1-x0) * acc.x0 ## w0x1 <- (1-x1)**2 + (-1)**(1-x1) * acc.x1 pz <- mean(z) accuracy_imbalance_ratio <- (prediction_accuracy + accuracy_imbalance_difference/2) / (prediction_accuracy - accuracy_imbalance_difference/2) # this works because of conditional probability accuracy_z0 <- prediction_accuracy / (pz*(accuracy_imbalance_ratio) + (1-pz)) accuracy_z1 <- accuracy_imbalance_ratio * accuracy_z0 z0x0 <- df[(z==0) & (x==0)]$x z0x1 <- df[(z==0) & (x==1)]$x z1x0 <- df[(z==1) & (x==0)]$x z1x1 <- df[(z==1) & (x==1)]$x yz0x0 <- df[(z==0) & (x==0)]$y yz0x1 <- df[(z==0) & (x==1)]$y yz1x0 <- df[(z==1) & (x==0)]$y yz1x1 <- df[(z==1) & (x==1)]$y nz0x0 <- nrow(df[(z==0) & (x==0)]) nz0x1 <- nrow(df[(z==0) & (x==1)]) nz1x0 <- nrow(df[(z==1) & (x==0)]) nz1x1 <- nrow(df[(z==1) & (x==1)]) yz1 <- df[z==1]$y yz1 <- df[z==1]$y # tranform yz0.1 into a logistic distribution with mean accuracy_z0 acc.z0x0 <- plogis(0.5*scale(yz0x0) + qlogis(accuracy_z0)) acc.z0x1 <- plogis(0.5*scale(yz0x1) + qlogis(accuracy_z0)) acc.z1x0 <- plogis(1.5*scale(yz1x0) + qlogis(accuracy_z1)) acc.z1x1 <- plogis(1.5*scale(yz1x1) + qlogis(accuracy_z1)) w0z0x0 <- (1-z0x0)**2 + (-1)**(1-z0x0) * acc.z0x0 w0z0x1 <- (1-z0x1)**2 + (-1)**(1-z0x1) * acc.z0x1 w0z1x0 <- (1-z1x0)**2 + (-1)**(1-z1x0) * acc.z1x0 w0z1x1 <- (1-z1x1)**2 + (-1)**(1-z1x1) * acc.z1x1 ##perrorz0 <- w0z0*(pyz0) ##perrorz1 <- w0z1*(pyz1) w0z0x0.noisy.odds <- rlogis(nz0x0,qlogis(w0z0x0)) w0z0x1.noisy.odds <- rlogis(nz0x1,qlogis(w0z0x1)) w0z1x0.noisy.odds <- rlogis(nz1x0,qlogis(w0z1x0)) w0z1x1.noisy.odds <- rlogis(nz1x1,qlogis(w0z1x1)) df[(z==0)&(x==0),w:=plogis(w0z0x0.noisy.odds)] df[(z==0)&(x==1),w:=plogis(w0z0x1.noisy.odds)] df[(z==1)&(x==0),w:=plogis(w0z1x0.noisy.odds)] df[(z==1)&(x==1),w:=plogis(w0z1x1.noisy.odds)] df[,w_pred:=as.integer(w > 0.5)] print(mean(df[z==0]$x == df[z==0]$w_pred)) print(mean(df[z==1]$x == df[z==1]$w_pred)) print(mean(df$w_pred == df$x)) return(df) } parser <- arg_parser("Simulate data and fit corrected models") parser <- add_argument(parser, "--N", default=1400, help="number of observations of w") parser <- add_argument(parser, "--m", default=500, help="m the number of ground truth observations") parser <- add_argument(parser, "--seed", default=50, help='seed for the rng') parser <- add_argument(parser, "--outfile", help='output file', default='example_2.feather') parser <- add_argument(parser, "--y_explained_variance", help='what proportion of the variance of y can be explained?', default=0.01) parser <- add_argument(parser, "--prediction_accuracy", help='how accurate is the predictive model?', default=0.73) parser <- add_argument(parser, "--accuracy_imbalance_difference", help='how much more accurate is the predictive model for one class than the other?', default=0.3) parser <- add_argument(parser, "--Bzx", help='Effect of z on x', default=0.3) parser <- add_argument(parser, "--Bzy", help='Effect of z on y', default=-0.3) args <- parse_args(parser) B0 <- 0 Bxy <- 0.3 Bzy <- args$Bzy if(args$m < args$N){ df <- simulate_data(args$N, args$m, B0, Bxy, args$Bzx, Bzy, args$seed, args$y_explained_variance, args$prediction_accuracy, args$accuracy_imbalance_difference) result <- list('N'=args$N,'m'=args$m,'B0'=B0,'Bxy'=Bxy, Bzx=args$Bzx, 'Bzy'=Bzy, 'seed'=args$seed, 'y_explained_variance'=args$y_explained_variance, 'prediction_accuracy'=args$prediction_accuracy, 'accuracy_imbalance_difference'=args$accuracy_imbalance_difference, error='') outline <- run_simulation(df, result, outcome_formula=y~x+z, proxy_formula=w_pred~x+z+y+x:y, truth_formula=x~z) outfile_lock <- lock(paste0(args$outfile, '_lock'),exclusive=TRUE) if(file.exists(args$outfile)){ logdata <- read_feather(args$outfile) logdata <- rbind(logdata,as.data.table(outline), fill=TRUE) } else { logdata <- as.data.table(outline) } print(outline) write_feather(logdata, args$outfile) unlock(outfile_lock) }