### EXAMPLE 1: demonstrates how measurement error can lead to a type sign error in a covariate ### What kind of data invalidates fong + tyler? ### Even when you have a good predictor, if it's biased against a covariate you can get the wrong sign. ### Even when you include the proxy variable in the regression. ### But with some ground truth and multiple imputation, you can fix it. library(argparser) library(mecor) library(ggplot2) library(data.table) library(filelock) library(arrow) library(Amelia) library(Zelig) library(predictionError) options(amelia.parallel="no", amelia.ncpus=1) setDTthreads(40) source("simulation_base.R") ## SETUP: ### we want to estimate x -> y; x is MAR ### we have x -> k; k -> w; x -> w is used to predict x via the model w. ### A realistic scenario is that we have an NLP model predicting something like "racial harassment" in social media comments ### The labels x are binary, but the model provides a continuous predictor ### simulation: #### how much power do we get from the model in the first place? (sweeping N and m) #### ## one way to do it is by adding correlation to x.obs and y that isn't in w. ## in other words, the model is missing an important feature of x.obs that's related to y. simulate_data <- function(N, m, B0, Bxy, Bzx, Bzy, seed, y_explained_variance=0.025, prediction_accuracy=0.73, y_bias=-0.8,accuracy_imbalance_difference=0.3){ set.seed(seed) # make w and y dependent z <- rbinom(N, 1, plogis(qlogis(0.5))) x <- rbinom(N, 1, plogis(Bzx * z + qlogis(0.5))) y.var.epsilon <- (var(Bzy * z) + var(Bxy *x) + 2*cov(Bzy*z,Bxy*x)) * ((1-y_explained_variance)/y_explained_variance) y.epsilon <- rnorm(N, sd = sqrt(y.var.epsilon)) y <- Bzy * z + Bxy * x + y.epsilon df <- data.table(x=x,y=y,z=z) if(m < N){ df <- df[sample(nrow(df), m), x.obs := x] } else { df <- df[, x.obs := x] } ## probablity of an error is correlated with y ## pz <- mean(z) ## accuracy_imbalance_ratio <- (prediction_accuracy + accuracy_imbalance_difference/2) / (prediction_accuracy - accuracy_imbalance_difference/2) ## # this works because of conditional probability ## accuracy_z0 <- prediction_accuracy / (pz*(accuracy_imbalance_ratio) + (1-pz)) ## accuracy_z1 <- accuracy_imbalance_ratio * accuracy_z0 ## z0x0 <- df[(z==0) & (x==0)]$x ## z0x1 <- df[(z==0) & (x==1)]$x ## z1x0 <- df[(z==1) & (x==0)]$x ## z1x1 <- df[(z==1) & (x==1)]$x ## yz0x0 <- df[(z==0) & (x==0)]$y ## yz0x1 <- df[(z==0) & (x==1)]$y ## yz1x0 <- df[(z==1) & (x==0)]$y ## yz1x1 <- df[(z==1) & (x==1)]$y ## nz0x0 <- nrow(df[(z==0) & (x==0)]) ## nz0x1 <- nrow(df[(z==0) & (x==1)]) ## nz1x0 <- nrow(df[(z==1) & (x==0)]) ## nz1x1 <- nrow(df[(z==1) & (x==1)]) ## yz1 <- df[z==1]$y ## yz1 <- df[z==1]$y ## # tranform yz0.1 into a logistic distribution with mean accuracy_z0 ## acc.z0x0 <- plogis(0.5*scale(yz0x0) + qlogis(accuracy_z0)) ## acc.z0x1 <- plogis(0.5*scale(yz0x1) + qlogis(accuracy_z0)) ## acc.z1x0 <- plogis(1.5*scale(yz1x0) + qlogis(accuracy_z1)) ## acc.z1x1 <- plogis(1.5*scale(yz1x1) + qlogis(accuracy_z1)) ## w0z0x0 <- (1-z0x0)**2 + (-1)**(1-z0x0) * acc.z0x0 ## w0z0x1 <- (1-z0x1)**2 + (-1)**(1-z0x1) * acc.z0x1 ## w0z1x0 <- (1-z1x0)**2 + (-1)**(1-z1x0) * acc.z1x0 ## w0z1x1 <- (1-z1x1)**2 + (-1)**(1-z1x1) * acc.z1x1 ## ##perrorz0 <- w0z0*(pyz0) ## ##perrorz1 <- w0z1*(pyz1) ## w0z0x0.noisy.odds <- rlogis(nz0x0,qlogis(w0z0x0)) ## w0z0x1.noisy.odds <- rlogis(nz0x1,qlogis(w0z0x1)) ## w0z1x0.noisy.odds <- rlogis(nz1x0,qlogis(w0z1x0)) ## w0z1x1.noisy.odds <- rlogis(nz1x1,qlogis(w0z1x1)) ## df[(z==0)&(x==0),w:=plogis(w0z0x0.noisy.odds)] ## df[(z==0)&(x==1),w:=plogis(w0z0x1.noisy.odds)] ## df[(z==1)&(x==0),w:=plogis(w0z1x0.noisy.odds)] ## df[(z==1)&(x==1),w:=plogis(w0z1x1.noisy.odds)] ## df[,w_pred:=as.integer(w > 0.5)] ## print(mean(df[z==0]$x == df[z==0]$w_pred)) ## print(mean(df[z==1]$x == df[z==1]$w_pred)) ## print(mean(df$w_pred == df$x)) odds.x1 <- qlogis(prediction_accuracy) + y_bias*qlogis(pnorm(scale(df[x==1]$y))) odds.x0 <- qlogis(prediction_accuracy,lower.tail=F) + y_bias*qlogis(pnorm(scale(df[x==0]$y))) ## acc.x0 <- p.correct[df[,x==0]] ## acc.x1 <- p.correct[df[,x==1]] df[x==0,w:=plogis(rlogis(.N,odds.x0))] df[x==1,w:=plogis(rlogis(.N,odds.x1))] df[,w_pred := as.integer(w > 0.5)] print(mean(df[z==0]$x == df[z==0]$w_pred)) print(mean(df[z==1]$x == df[z==1]$w_pred)) print(mean(df$w_pred == df$x)) print(mean(df[y>=0]$w_pred == df[y>=0]$x)) print(mean(df[y<=0]$w_pred == df[y<=0]$x)) return(df) } parser <- arg_parser("Simulate data and fit corrected models") parser <- add_argument(parser, "--N", default=1000, help="number of observations of w") aparser <- add_argument(parser, "--m", default=500, help="m the number of ground truth observations") parser <- add_argument(parser, "--seed", default=51, help='seed for the rng') parser <- add_argument(parser, "--outfile", help='output file', default='example_2.feather') parser <- add_argument(parser, "--y_explained_variance", help='what proportion of the variance of y can be explained?', default=0.1) parser <- add_argument(parser, "--prediction_accuracy", help='how accurate is the predictive model?', default=0.8) parser <- add_argument(parser, "--accuracy_imbalance_difference", help='how much more accurate is the predictive model for one class than the other?', default=0.3) parser <- add_argument(parser, "--Bzx", help='Effect of z on x', default=0.3) parser <- add_argument(parser, "--Bzy", help='Effect of z on y', default=-0.3) parser <- add_argument(parser, "--Bxy", help='Effect of z on y', default=0.3) parser <- add_argument(parser, "--outcome_formula", help='formula for the outcome variable', default="y~x+z") parser <- add_argument(parser, "--proxy_formula", help='formula for the proxy variable', default="w_pred~y*z*x") parser <- add_argument(parser, "--y_bias", help='coefficient of y on the probability a classification is correct', default=-0.75) parser <- add_argument(parser, "--truth_formula", help='formula for the true variable', default="x~z") args <- parse_args(parser) B0 <- 0 Bxy <- args$Bxy Bzy <- args$Bzy Bzx <- args$Bzx if(args$m < args$N){ df <- simulate_data(args$N, args$m, B0, Bxy, Bzx, Bzy, args$seed, args$y_explained_variance, args$prediction_accuracy, y_bias=args$y_bias) ## df.pc <- df[,.(x,y,z,w_pred,w)] ## # df.pc <- df.pc[,err:=x-w_pred] ## pc.df <- pc(suffStat=list(C=cor(df.pc),n=nrow(df.pc)),indepTest=gaussCItest,labels=names(df.pc),alpha=0.05) ## plot(pc.df) result <- list('N'=args$N,'m'=args$m,'B0'=B0,'Bxy'=Bxy, Bzx=args$Bzx, 'Bzy'=Bzy, 'seed'=args$seed, 'y_explained_variance'=args$y_explained_variance, 'prediction_accuracy'=args$prediction_accuracy, 'accuracy_imbalance_difference'=args$accuracy_imbalance_difference, 'y_bias'=args$y_bias,'outcome_formula'=args$outcome_formula, 'proxy_formula'=args$proxy_formula,truth_formula=args$truth_formula, error='') outline <- run_simulation(df, result, outcome_formula=as.formula(args$outcome_formula), proxy_formula=as.formula(args$proxy_formula), truth_formula=as.formula(args$truth_formula)) outfile_lock <- lock(paste0(args$outfile, '_lock'),exclusive=TRUE) if(file.exists(args$outfile)){ logdata <- read_feather(args$outfile) logdata <- rbind(logdata,as.data.table(outline), fill=TRUE) } else { logdata <- as.data.table(outline) } print(outline) write_feather(logdata, args$outfile) unlock(outfile_lock) }