library(formula.tools) library(matrixStats) library(optimx) library(bbmle) ## df: dataframe to model ## outcome_formula: formula for y | x, z ## outcome_family: family for y | x, z ## proxy_formula: formula for w | x, z, y ## proxy_family: family for w | x, z, y ## truth_formula: formula for x | z ## truth_family: family for x | z ### ideal formulas for example 1 # test.fit.1 <- measerr_mle(df, y ~ x + z, gaussian(), w_pred ~ x, binomial(link='logit'), x ~ z) ### ideal formulas for example 2 # test.fit.2 <- measerr_mle(df, y ~ x + z, gaussian(), w_pred ~ x + z + y + y:x, binomial(link='logit'), x ~ z) likelihood.logistic <- function(model.params, outcome, model.matrix){ ll <- vector(mode='numeric', length=length(outcome)) ll[outcome == 1] <- plogis(model.params %*% t(model.matrix[outcome==1,]), log=TRUE) ll[outcome == 0] <- plogis(model.params %*% t(model.matrix[outcome==0,]), log=TRUE, lower.tail=FALSE) return(ll) } ## outcome_formula <- y ~ x + z; proxy_formula <- w_pred ~ y + x + z + x:z + x:y + z:y measerr_mle_dv <- function(df, outcome_formula, outcome_family=binomial(link='logit'), proxy_formula, proxy_family=binomial(link='logit'),method='optim'){ df.obs <- model.frame(outcome_formula, df) proxy.model.matrix <- model.matrix(proxy_formula, df) proxy.variable <- all.vars(proxy_formula)[1] df.proxy.obs <- model.frame(proxy_formula,df) proxy.obs <- with(df.proxy.obs, eval(parse(text=proxy.variable))) response.var <- all.vars(outcome_formula)[1] y.obs <- with(df.obs,eval(parse(text=response.var))) outcome.model.matrix <- model.matrix(outcome_formula, df.obs) df.unobs <- df[is.na(df[[response.var]])] df.unobs.y1 <- copy(df.unobs) df.unobs.y1[[response.var]] <- 1 df.unobs.y0 <- copy(df.unobs) df.unobs.y0[[response.var]] <- 0 outcome.model.matrix.y1 <- model.matrix(outcome_formula, df.unobs.y1) proxy.model.matrix.y1 <- model.matrix(proxy_formula, df.unobs.y1) proxy.model.matrix.y0 <- model.matrix(proxy_formula, df.unobs.y0) proxy.unobs <- with(df.unobs, eval(parse(text=proxy.variable))) nll <- function(params){ param.idx <- 1 n.outcome.model.covars <- dim(outcome.model.matrix)[2] outcome.params <- params[param.idx:n.outcome.model.covars] param.idx <- param.idx + n.outcome.model.covars if((outcome_family$family == "binomial") & (outcome_family$link == 'logit')){ ll.y.obs <- vector(mode='numeric', length=length(y.obs)) ll.y.obs[y.obs==1] <- plogis(outcome.params %*% t(outcome.model.matrix[y.obs==1,]),log=TRUE) ll.y.obs[y.obs==0] <- plogis(outcome.params %*% t(outcome.model.matrix[y.obs==0,]),log=TRUE,lower.tail=FALSE) } n.proxy.model.covars <- dim(proxy.model.matrix)[2] proxy.params <- params[param.idx:(n.proxy.model.covars+param.idx-1)] param.idx <- param.idx + n.proxy.model.covars if( (proxy_family$family=="binomial") & (proxy_family$link=='logit')){ ll.w.obs <- vector(mode='numeric',length=dim(proxy.model.matrix)[1]) ll.w.obs[proxy.obs==1] <- plogis(proxy.params %*% t(proxy.model.matrix[proxy.obs==1,]),log=TRUE) ll.w.obs[proxy.obs==0] <- plogis(proxy.params %*% t(proxy.model.matrix[proxy.obs==0,]),log=TRUE, lower.tail=FALSE) } ll.obs <- sum(ll.y.obs + ll.w.obs) ## integrate out y if((outcome_family$family == "binomial") & (outcome_family$link == 'logit')){ ll.y.unobs.1 <- vector(mode='numeric', length=dim(outcome.model.matrix.y1)[1]) ll.y.unobs.0 <- vector(mode='numeric', length=dim(outcome.model.matrix.y1)[1]) ll.y.unobs.1 <- plogis(outcome.params %*% t(outcome.model.matrix.y1),log=TRUE) ll.y.unobs.0 <- plogis(outcome.params %*% t(outcome.model.matrix.y1),log=TRUE,lower.tail=FALSE) } if( (proxy_family$family=="binomial") & (proxy_family$link=='logit')){ ll.w.unobs.1 <- vector(mode='numeric',length=dim(proxy.model.matrix.y1)[1]) ll.w.unobs.0 <- vector(mode='numeric',length=dim(proxy.model.matrix.y0)[1]) ll.w.unobs.1[proxy.unobs==1] <- plogis(proxy.params %*% t(proxy.model.matrix.y1[proxy.unobs==1,]),log=TRUE) ll.w.unobs.1[proxy.unobs==0] <- plogis(proxy.params %*% t(proxy.model.matrix.y1[proxy.unobs==0,]),log=TRUE, lower.tail=FALSE) ll.w.unobs.0[proxy.unobs==1] <- plogis(proxy.params %*% t(proxy.model.matrix.y0[proxy.unobs==1,]),log=TRUE) ll.w.unobs.0[proxy.unobs==0] <- plogis(proxy.params %*% t(proxy.model.matrix.y0[proxy.unobs==0,]),log=TRUE, lower.tail=FALSE) } ll.unobs.1 <- ll.y.unobs.1 + ll.w.unobs.1 ll.unobs.0 <- ll.y.unobs.0 + ll.w.unobs.0 ll.unobs <- sum(colLogSumExps(rbind(ll.unobs.1,ll.unobs.0))) ll <- ll.unobs + ll.obs return(-ll) } params <- colnames(model.matrix(outcome_formula,df)) lower <- rep(-Inf, length(params)) proxy.params <- colnames(model.matrix(proxy_formula, df)) params <- c(params, paste0('proxy_',proxy.params)) lower <- c(lower, rep(-Inf, length(proxy.params))) start <- rep(0.1,length(params)) names(start) <- params if(method=='optim'){ fit <- optim(start, fn = nll, lower=lower, method='L-BFGS-B', hessian=TRUE, control=list(maxit=1e6)) } else { quoted.names <- gsub("[\\(\\)]",'',names(start)) print(quoted.names) text <- paste("function(", paste0(quoted.names,'=',start,collapse=','),"){params<-c(",paste0(quoted.names,collapse=','),");return(nll(params))}") measerr_mle_nll <- eval(parse(text=text)) names(start) <- quoted.names names(lower) <- quoted.names fit <- mle2(minuslogl=measerr_mle_nll, start=start, lower=lower, parnames=params,control=list(maxit=1e6),method='L-BFGS-B') } return(fit) } measerr_mle <- function(df, outcome_formula, outcome_family=gaussian(), proxy_formula, proxy_family=binomial(link='logit'), truth_formula, truth_family=binomial(link='logit'),method='optim'){ df.obs <- model.frame(outcome_formula, df) response.var <- all.vars(outcome_formula)[1] proxy.variable <- all.vars(proxy_formula)[1] truth.variable <- all.vars(truth_formula)[1] outcome.model.matrix <- model.matrix(outcome_formula, df) proxy.model.matrix <- model.matrix(proxy_formula, df) y.obs <- with(df.obs,eval(parse(text=response.var))) df.proxy.obs <- model.frame(proxy_formula,df) proxy.obs <- with(df.proxy.obs, eval(parse(text=proxy.variable))) n.proxy.model.covars <- dim(proxy.model.matrix)[2] df.truth.obs <- model.frame(truth_formula, df) truth.obs <- with(df.truth.obs, eval(parse(text=truth.variable))) truth.model.matrix <- model.matrix(truth_formula,df.truth.obs) n.truth.model.covars <- dim(truth.model.matrix)[2] df.unobs <- df[is.na(eval(parse(text=truth.variable)))] df.unobs.x1 <- copy(df.unobs) df.unobs.x1[,truth.variable] <- 1 df.unobs.x0 <- copy(df.unobs) df.unobs.x0[,truth.variable] <- 0 outcome.unobs <- with(df.unobs, eval(parse(text=response.var))) outcome.model.matrix.x0 <- model.matrix(outcome_formula, df.unobs.x0) outcome.model.matrix.x1 <- model.matrix(outcome_formula, df.unobs.x1) proxy.model.matrix.x0 <- model.matrix(proxy_formula, df.unobs.x0) proxy.model.matrix.x1 <- model.matrix(proxy_formula, df.unobs.x1) proxy.unobs <- df.unobs[[proxy.variable]] truth.model.matrix.unobs <- model.matrix(truth_formula, df.unobs.x0) measerr_mle_nll <- function(params){ param.idx <- 1 n.outcome.model.covars <- dim(outcome.model.matrix)[2] outcome.params <- params[param.idx:n.outcome.model.covars] param.idx <- param.idx + n.outcome.model.covars ## likelihood for the fully observed data if(outcome_family$family == "gaussian"){ sigma.y <- params[param.idx] param.idx <- param.idx + 1 # outcome_formula likelihood using linear regression ll.y.obs <- dnorm(y.obs, outcome.params %*% t(outcome.model.matrix),sd=sigma.y, log=TRUE) } else if( (outcome_family$family == "binomial") & (outcome_family$link == "logit") ) ll.y.obs <- likelihood.logistic(outcome.params, y.obs, outcome.model.matrix) proxy.params <- params[param.idx:(n.proxy.model.covars+param.idx-1)] param.idx <- param.idx + n.proxy.model.covars if( (proxy_family$family=="binomial") & (proxy_family$link=='logit')) ll.w.obs <- likelihood.logistic(proxy.params, proxy.obs, proxy.model.matrix) truth.params <- params[param.idx:(n.truth.model.covars + param.idx - 1)] if( (truth_family$family=="binomial") & (truth_family$link=='logit')) ll.x.obs <- likelihood.logistic(truth.params, truth.obs, truth.model.matrix) # add the three likelihoods ll.obs <- sum(ll.y.obs + ll.w.obs + ll.x.obs) ## likelihood for the predicted data ## integrate out the "truth" variable. if(truth_family$family=='binomial'){ if(outcome_family$family=="gaussian"){ # likelihood of outcome ll.y.x0 <- dnorm(outcome.unobs, outcome.params %*% t(outcome.model.matrix.x0), sd=sigma.y, log=TRUE) ll.y.x1 <- dnorm(outcome.unobs, outcome.params %*% t(outcome.model.matrix.x1), sd=sigma.y, log=TRUE) } else if( (outcome_family$family == "binomial") & (outcome_family$link == "logit") ){ ll.y.x1 <- likelihood.logistic(outcome.params, outcome.unobs, outcome.model.matrix.x1) ll.y.x0 <- likelihood.logistic(outcome.params, outcome.unobs, outcome.model.matrix.x0) } if( (proxy_family$family=='binomial') & (proxy_family$link=='logit')){ ll.w.x0 <- likelihood.logistic(proxy.params, proxy.unobs, proxy.model.matrix.x0) ll.w.x1 <- likelihood.logistic(proxy.params, proxy.unobs, proxy.model.matrix.x1) } if(truth_family$link=='logit'){ # likelihood of truth ll.x.x1 <- plogis(truth.params %*% t(truth.model.matrix.unobs), log=TRUE) ll.x.x0 <- plogis(truth.params %*% t(truth.model.matrix.unobs), log=TRUE, lower.tail=FALSE) } } ll.x0 <- ll.y.x0 + ll.w.x0 + ll.x.x0 ll.x1 <- ll.y.x1 + ll.w.x1 + ll.x.x1 ll.unobs <- sum(colLogSumExps(rbind(ll.x0, ll.x1))) return(-(ll.unobs + ll.obs)) } outcome.params <- colnames(model.matrix(outcome_formula,df)) lower <- rep(-Inf, length(outcome.params)) if(outcome_family$family=='gaussian'){ params <- c(outcome.params, 'sigma_y') lower <- c(lower, 0.00001) } else { params <- outcome.params } proxy.params <- colnames(model.matrix(proxy_formula, df)) params <- c(params, paste0('proxy_',proxy.params)) lower <- c(lower, rep(-Inf, length(proxy.params))) truth.params <- colnames(model.matrix(truth_formula, df)) params <- c(params, paste0('truth_', truth.params)) lower <- c(lower, rep(-Inf, length(truth.params))) start <- rep(0.1,length(params)) names(start) <- params if(method=='optim'){ fit <- optim(start, fn = measerr_mle_nll, lower=lower, method='L-BFGS-B', hessian=TRUE, control=list(maxit=1e6)) } else { # method='mle2' quoted.names <- gsub("[\\(\\)]",'',names(start)) text <- paste("function(", paste0(quoted.names,'=',start,collapse=','),"){params<-c(",paste0(quoted.names,collapse=','),");return(measerr_mle_nll(params))}") measerr_mle_nll_mle <- eval(parse(text=text)) names(start) <- quoted.names names(lower) <- quoted.names fit <- mle2(minuslogl=measerr_mle_nll_mle, start=start, lower=lower, parnames=params,control=list(maxit=1e6),method='L-BFGS-B') } return(fit) } ## Experimental, but probably works. measerr_irr_mle <- function(df, outcome_formula, outcome_family=gaussian(), coder_formulas=list(x.obs.0~x, x.obs.1~x), proxy_formula, proxy_family=binomial(link='logit'), truth_formula, truth_family=binomial(link='logit'),method='optim'){ ### in this scenario, the ground truth also has measurement error, but we have repeated measures for it. # this time we never get to observe the true X outcome.model.matrix <- model.matrix(outcome_formula, df) proxy.model.matrix <- model.matrix(proxy_formula, df) response.var <- all.vars(outcome_formula)[1] proxy.var <- all.vars(proxy_formula)[1] param.var <- all.vars(truth_formula)[1] truth.var<- all.vars(truth_formula)[1] y <- with(df,eval(parse(text=response.var))) nll <- function(params){ param.idx <- 1 n.outcome.model.covars <- dim(outcome.model.matrix)[2] outcome.params <- params[param.idx:n.outcome.model.covars] param.idx <- param.idx + n.outcome.model.covars if(outcome_family$family == "gaussian"){ sigma.y <- params[param.idx] param.idx <- param.idx + 1 } n.proxy.model.covars <- dim(proxy.model.matrix)[2] proxy.params <- params[param.idx:(n.proxy.model.covars+param.idx-1)] param.idx <- param.idx + n.proxy.model.covars df.temp <- copy(df) if((truth_family$family == "binomial") & (truth_family$link=='logit')){ integrate.grid <- expand.grid(replicate(1 + length(coder_formulas), c(0,1), simplify=FALSE)) ll.parts <- matrix(nrow=nrow(df),ncol=nrow(integrate.grid)) for(i in 1:nrow(integrate.grid)){ # setup the dataframe for this row row <- integrate.grid[i,] df.temp[[param.var]] <- row[[1]] ci <- 2 for(coder_formula in coder_formulas){ coder.var <- all.vars(coder_formula)[1] df.temp[[coder.var]] <- row[[ci]] ci <- ci + 1 } outcome.model.matrix <- model.matrix(outcome_formula, df.temp) if(outcome_family$family == "gaussian"){ ll.y <- dnorm(y, outcome.params %*% t(outcome.model.matrix), sd=sigma.y, log=TRUE) } if(proxy_family$family=="binomial" & (proxy_family$link=='logit')){ proxy.model.matrix <- model.matrix(proxy_formula, df.temp) ll.w <- vector(mode='numeric', length=dim(proxy.model.matrix)[1]) proxyvar <- with(df.temp,eval(parse(text=proxy.var))) ll.w[proxyvar==1] <- plogis(proxy.params %*% t(proxy.model.matrix[proxyvar==1,]),log=TRUE) ll.w[proxyvar==0] <- plogis(proxy.params %*% t(proxy.model.matrix[proxyvar==0,]),log=TRUE,lower.tail=FALSE) } ## probability of the coded variables coder.lls <- matrix(nrow=nrow(df.temp),ncol=length(coder_formulas)) ci <- 1 for(coder_formula in coder_formulas){ coder.model.matrix <- model.matrix(coder_formula, df.temp) n.coder.model.covars <- dim(coder.model.matrix)[2] coder.params <- params[param.idx:(n.coder.model.covars + param.idx - 1)] param.idx <- param.idx + n.coder.model.covars coder.var <- all.vars(coder_formula)[1] x.obs <- with(df.temp, eval(parse(text=coder.var))) true.codervar <- df[[all.vars(coder_formula)[1]]] ll.coder <- vector(mode='numeric', length=dim(coder.model.matrix)[1]) ll.coder[x.obs==1] <- plogis(coder.params %*% t(coder.model.matrix[x.obs==1,]),log=TRUE) ll.coder[x.obs==0] <- plogis(coder.params %*% t(coder.model.matrix[x.obs==0,]),log=TRUE,lower.tail=FALSE) # don't count when we know the observed value, unless we're accounting for observed value ll.coder[(!is.na(true.codervar)) & (true.codervar != x.obs)] <- NA coder.lls[,ci] <- ll.coder ci <- ci + 1 } truth.model.matrix <- model.matrix(truth_formula, df.temp) n.truth.model.covars <- dim(truth.model.matrix)[2] truth.params <- params[param.idx:(n.truth.model.covars + param.idx - 1)] for(coder_formula in coder_formulas){ coder.model.matrix <- model.matrix(coder_formula, df.temp) n.coder.model.covars <- dim(coder.model.matrix)[2] param.idx <- param.idx - n.coder.model.covars } x <- with(df.temp, eval(parse(text=truth.var))) ll.truth <- vector(mode='numeric', length=dim(truth.model.matrix)[1]) ll.truth[x==1] <- plogis(truth.params %*% t(truth.model.matrix[x==1,]), log=TRUE) ll.truth[x==0] <- plogis(truth.params %*% t(truth.model.matrix[x==0,]), log=TRUE, lower.tail=FALSE) true.truthvar <- df[[all.vars(truth_formula)[1]]] if(!is.null(true.truthvar)){ # ll.truth[(!is.na(true.truthvar)) & (true.truthvar != truthvar)] <- -Inf # ll.truth[(!is.na(true.truthvar)) & (true.truthvar == truthvar)] <- 0 } ll.parts[,i] <- ll.y + ll.w + apply(coder.lls,1,sum) + ll.truth } lls <- rowLogSumExps(ll.parts,na.rm=TRUE) ## likelihood of observed data target <- -1 * sum(lls) return(target) } } outcome.params <- colnames(model.matrix(outcome_formula,df)) lower <- rep(-Inf, length(outcome.params)) if(outcome_family$family=='gaussian'){ params <- c(outcome.params, 'sigma_y') lower <- c(lower, 0.00001) } else { params <- outcome.params } proxy.params <- colnames(model.matrix(proxy_formula, df)) params <- c(params, paste0('proxy_',proxy.params)) positive.params <- paste0('proxy_',truth.var) lower <- c(lower, rep(-Inf, length(proxy.params))) names(lower) <- params lower[positive.params] <- 0.01 ci <- 0 for(coder_formula in coder_formulas){ coder.params <- colnames(model.matrix(coder_formula,df)) params <- c(params, paste0('coder_',ci,coder.params)) positive.params <- paste0('coder_', ci, truth.var) ci <- ci + 1 lower <- c(lower, rep(-Inf, length(coder.params))) names(lower) <- params lower[positive.params] <- 0.01 } truth.params <- colnames(model.matrix(truth_formula, df)) params <- c(params, paste0('truth_', truth.params)) lower <- c(lower, rep(-Inf, length(truth.params))) start <- rep(0.1,length(params)) names(start) <- params names(lower) <- params if(method=='optim'){ print(start) fit <- optim(start, fn = nll, lower=lower, method='L-BFGS-B', hessian=TRUE, control=list(maxit=1e6)) } else { quoted.names <- gsub("[\\(\\)]",'',names(start)) print(quoted.names) text <- paste("function(", paste0(quoted.names,'=',start,collapse=','),"){params<-c(",paste0(quoted.names,collapse=','),");return(nll(params))}") measerr_mle_nll <- eval(parse(text=text)) names(start) <- quoted.names names(lower) <- quoted.names fit <- mle2(minuslogl=measerr_mle_nll, start=start, lower=lower, method='L-BFGS-B',control=list(maxit=1e6)) } return(fit) } ## Experimental, and does not work. measerr_irr_mle_dv <- function(df, outcome_formula, outcome_family=binomial(link='logit'), coder_formulas=list(y.obs.0~y+w_pred+y.obs.1,y.obs.1~y+w_pred+y.obs.0), proxy_formula=w_pred~y, proxy_family=binomial(link='logit'),method='optim'){ integrate.grid <- expand.grid(replicate(1 + length(coder_formulas), c(0,1), simplify=FALSE)) # print(integrate.grid) outcome.model.matrix <- model.matrix(outcome_formula, df) n.outcome.model.covars <- dim(outcome.model.matrix)[2] ### in this scenario, the ground truth also has measurement error, but we have repeated measures for it. # this time we never get to observe the true X nll <- function(params){ param.idx <- 1 outcome.params <- params[param.idx:n.outcome.model.covars] param.idx <- param.idx + n.outcome.model.covars proxy.model.matrix <- model.matrix(proxy_formula, df) n.proxy.model.covars <- dim(proxy.model.matrix)[2] response.var <- all.vars(outcome_formula)[1] if(outcome_family$family == "gaussian"){ sigma.y <- params[param.idx] param.idx <- param.idx + 1 } proxy.params <- params[param.idx:(n.proxy.model.covars+param.idx-1)] param.idx <- param.idx + n.proxy.model.covars df.temp <- copy(df) if((outcome_family$family == "binomial") & (outcome_family$link=='logit')){ ll.parts <- matrix(nrow=nrow(df),ncol=nrow(integrate.grid)) for(i in 1:nrow(integrate.grid)){ # setup the dataframe for this row row <- integrate.grid[i,] df.temp[[response.var]] <- row[[1]] ci <- 2 for(coder_formula in coder_formulas){ codervar <- all.vars(coder_formula)[1] df.temp[[codervar]] <- row[[ci]] ci <- ci + 1 } outcome.model.matrix <- model.matrix(outcome_formula, df.temp) if(outcome_family$family == "gaussian"){ ll.y <- dnorm(df.temp[[response.var]], outcome.params %*% t(outcome.model.matrix), sd=sigma.y, log=T) } if(outcome_family$family == "binomial" & (outcome_family$link=='logit')){ ll.y <- vector(mode='numeric',length=nrow(df.temp)) ll.y[df.temp[[response.var]]==1] <- plogis( outcome.params %*% t(outcome.model.matrix), log=TRUE) ll.y[df.temp[[response.var]]==0] <- plogis( outcome.params %*% t(outcome.model.matrix), log=TRUE,lower.tail=FALSE) } if(proxy_family$family=="binomial" & (proxy_family$link=='logit')){ proxy.model.matrix <- model.matrix(proxy_formula, df.temp) ll.w <- vector(mode='numeric', length=dim(proxy.model.matrix)[1]) proxyvar <- with(df.temp,eval(parse(text=all.vars(proxy_formula)[1]))) ll.w[proxyvar==1] <- plogis(proxy.params %*% t(proxy.model.matrix[proxyvar==1,]),log=TRUE) ll.w[proxyvar==0] <- plogis(proxy.params %*% t(proxy.model.matrix[proxyvar==0,]),log=TRUE,lower.tail=FALSE) } ## probability of the coded variables coder.lls <- matrix(nrow=nrow(df.temp),ncol=length(coder_formulas)) ci <- 1 for(coder_formula in coder_formulas){ coder.model.matrix <- model.matrix(coder_formula, df.temp) n.coder.model.covars <- dim(coder.model.matrix)[2] coder.params <- params[param.idx:(n.coder.model.covars + param.idx - 1)] param.idx <- param.idx + n.coder.model.covars codervar <- with(df.temp, eval(parse(text=all.vars(coder_formula)[1]))) true.codervar <- df[[all.vars(coder_formula)[1]]] ll.coder <- vector(mode='numeric', length=dim(coder.model.matrix)[1]) ll.coder[codervar==1] <- plogis(coder.params %*% t(coder.model.matrix[codervar==1,]),log=TRUE) ll.coder[codervar==0] <- plogis(coder.params %*% t(coder.model.matrix[codervar==0,]),log=TRUE,lower.tail=FALSE) # don't count when we know the observed value, unless we're accounting for observed value ll.coder[(!is.na(true.codervar)) & (true.codervar != codervar)] <- NA coder.lls[,ci] <- ll.coder ci <- ci + 1 } for(coder_formula in coder_formulas){ coder.model.matrix <- model.matrix(coder_formula, df.temp) n.coder.model.covars <- dim(coder.model.matrix)[2] param.idx <- param.idx - n.coder.model.covars } ll.parts[,i] <- ll.y + ll.w + apply(coder.lls,1,function(x) sum(x)) } lls <- rowLogSumExps(ll.parts,na.rm=TRUE) ## likelihood of observed data target <- -1 * sum(lls) # print(target) # print(params) return(target) } } outcome.params <- colnames(model.matrix(outcome_formula,df)) response.var <- all.vars(outcome_formula)[1] lower <- rep(-Inf, length(outcome.params)) if(outcome_family$family=='gaussian'){ params <- c(outcome.params, 'sigma_y') lower <- c(lower, 0.00001) } else { params <- outcome.params } ## constrain the model of the coder and proxy vars ## this is to ensure identifiability ## it is a safe assumption because the coders aren't hostile (wrong more often than right) ## so we can assume that y ~Bw, B is positive proxy.params <- colnames(model.matrix(proxy_formula, df)) positive.params <- paste0('proxy_',response.var) params <- c(params, paste0('proxy_',proxy.params)) lower <- c(lower, rep(-Inf, length(proxy.params))) names(lower) <- params lower[positive.params] <- 0.001 ci <- 0 for(coder_formula in coder_formulas){ coder.params <- colnames(model.matrix(coder_formula,df)) latent.coder.params <- coder.params %in% response.var params <- c(params, paste0('coder_',ci,coder.params)) positive.params <- paste0('coder_',ci,response.var) ci <- ci + 1 lower <- c(lower, rep(-Inf, length(coder.params))) names(lower) <-params lower[positive.params] <- 0.001 } ## init by using the "loco model" temp.df <- copy(df) temp.df <- temp.df[y.obs.1 == y.obs.0, y:=y.obs.1] loco.model <- glm(outcome_formula, temp.df, family=outcome_family) start <- rep(1,length(params)) names(start) <- params start[names(coef(loco.model))] <- coef(loco.model) names(lower) <- params if(method=='optim'){ print(lower) fit <- optim(start, fn = nll, lower=lower, method='L-BFGS-B', hessian=TRUE,control=list(maxit=1e6)) } else { quoted.names <- gsub("[\\(\\)]",'',names(start)) print(quoted.names) text <- paste("function(", paste0(quoted.names,'=',start,collapse=','),"){params<-c(",paste0(quoted.names,collapse=','),");return(nll(params))}") measerr_mle_nll <- eval(parse(text=text)) names(start) <- quoted.names names(lower) <- quoted.names fit <- mle2(minuslogl=measerr_mle_nll, start=start, lower=lower, parnames=params,control=list(maxit=1e6),method='L-BFGS-B') } return(fit) }