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Measurement error can be differential— not distributed evenly and possible correlated with \(x\), \(y\), or \
(\varepsilon\).

Bias can be away from 0 in GLMs and nonlinear models or if measurement error is differential.

Confounding if the predictive model is biased introducing a correlation the measurement error and the
residuals \((E[\xi\varepsilon]=0)\).
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Advantages: Very flexible! Sometimes can work if the predictor $g(k) $ is biased. Good R packages ({Amelia}, {mi}, {mice},
{brms}).

Disadvantages: Results depend on quality of \(\widehat{f(x|w,y)}\); May require more validation data, computationally expensive,
statistically inefficient and doesn't seem to benefit much from larger datasets.
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Advantages: Simple, fast.

Disadvantages: Limited to OLS models. Requires an unbiased predictor \(g(k)\). R support ({mecor} R package) is pretty new.
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1. Estimate \(x = w + \xi\) to obtain \(\hat{x}\). (First-stage LS).

2. Estimate \(y = B^{2sls}\hat{x} + \varepsilon^{2sls}\). (Second-stage LS
/ regression calibration).

3. Estimate \(y = B^{val}x^* + \varepsilon^{val}\). (Validation dataset
model).

4. Combine \(B^{val}\) and \(B^{2sls}\) using the generalized method of
moments (GMM).

Advantages: Accurate. Sometimes robust if biased predictor \(g(k)\) is biased.
In theory, flexible to any models that can be fit using GMM.

Disadvantages: Implementation ({predictionError}) is new. API is
cumbersome and only supports linear models. Not robust if \(E(w\varepsilon)
\ne 0\). GMM may be unfamiliar to audiences.

2SLS+GMM is designed for this specific problem

Regression calibration with a trick.
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y is continuous and normal-ish.

\(x\) is binary (human labels) \(P(x)=0.5\).

\(w\) is the continuous predictor (e.g., probability) output of \(f(x)\) (not binary predictions).

if \(w\) is binary, most methods struggle, but regression calibration and 2SLS+GMM can do okay.

All methods work in this scenario

Multiple imputation is inefficient.

Example 1: estimator of the effect of x

A few notes on this scenario.

\(B_x = 0.2\), \(B_g=-0.2\) and \(sd(\varepsilon)=3\). So the signal-to-noise
ratio is high.

\(r\) can be concieved of as a missing feature in the predictive model \(g(k)\)
that is also correlated with \(y\).

For example \(r\) might be the race of a commentor, \(x\) could be racial
harassment, \(y\) whether the commentor gets banned and \(k\) only has
textual features but human coders can see user profiles to know \(r\).
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Bias in the predictive model creates bias in hypothesis tests.

Bias can be corrected in this case.

The next scenario has bias that's more tricky.

Multiple imputation helps, but doesn't fully correct the bias.

The catch with GMM:

Exclusion restriction: \(E[w \varepsilon] = 0\).

The restriction is violated if a variable \(U\) causes both \(K\) and \(Y\) and \
(X\) causes \(K\) (not visa-versa).

When will GMM+2SLS fail?Example 3: Estimates of the effect of xTakaways

Attenuation bias can be a big problem with noisy predictors—leading to small and biased estimates.

For more general hypothesis tests or if the predictor is biased, measurement error can lead to false discovery.

It's fixable with validation data—you may not need that much and you should already be getting it.

This means it can be okay poor predictors for hypothesis testing.

The ecosystem is underdeveloped, but a lot of methods have been researched.

Take advantage of machine learning + big data and get precise estimates when the signal-to-noise ratio is high!
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I've been focusing on noise in covariates. What if the predictive algorithm is used to measure the outcome \(y\)?

This isn't a problem in the simplest case (linear regression with homoskedastic errors). Noise in \(y\) is projected into the error
term.

Noise in the outcome is still a problem if errors are heteroskedastic and for GLMs / non-linear regression (e.g., logistic regression).

Multiple imputation (in theory) could help here. The other method's aren't designed for this case.

Solving this problem could be an important methodological contribution with a very broad impact.
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We can reduce and sometimes even eliminate this bias introduced by noise.
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Data Problem

1. Use validation data to estimate \(f(x|w,y)\), a probabilistic model of \(x\).

2. Sample \(m\) datasets from \(\widehat{f(x|w,y)}\).

3. Run your analysis on each of the \(m\) datasets.

4. Average the results from the \(m\) analyses using Rubin's rules.

Advantages: Very flexible! Sometimes can work if the predictor $g(k) $ is biased. Good R packages ({Amelia}, {mi}, {mice},
{brms}).

Disadvantages: Results depend on quality of \(\widehat{f(x|w,y)}\); May require more validation data, computationally expensive,
statistically inefficient and doesn't seem to benefit much from larger datasets.
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Regression calibration directly adjusts for attenuation bias.

1. Use validation data to estimate the errors \(\hat{\xi}\).

2. Use \(\hat{\xi}\) to correct the OLS estimate.

3. Correct the standard errors using MLE or bootstrapping.

Advantages: Simple, fast.

Disadvantages: Limited to OLS models. Requires an unbiased predictor \(g(k)\). R support ({mecor} R package) is pretty new.
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1. Estimate \(x = w + \xi\) to obtain \(\hat{x}\). (First-stage LS).

2. Estimate \(y = B^{2sls}\hat{x} + \varepsilon^{2sls}\). (Second-stage LS
/ regression calibration).

3. Estimate \(y = B^{val}x^* + \varepsilon^{val}\). (Validation dataset
model).

4. Combine \(B^{val}\) and \(B^{2sls}\) using the generalized method of
moments (GMM).

Advantages: Accurate. Sometimes robust if biased predictor \(g(k)\) is biased.
In theory, flexible to any models that can be fit using GMM.

Disadvantages: Implementation ({predictionError}) is new. API is
cumbersome and only supports linear models. Not robust if \(E(w\varepsilon)
\ne 0\). GMM may be unfamiliar to audiences.

2SLS+GMM is designed for this specific problem

Regression calibration with a trick.
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Testing attention bias correction

I've run simulations to test these approaches in several scenarios.

The model is not very good: about 70% accurate.

Most plausible scenario:

y is continuous and normal-ish.

\(x\) is binary (human labels) \(P(x)=0.5\).

\(w\) is the continuous predictor (e.g., probability) output of \(f(x)\) (not binary predictions).

if \(w\) is binary, most methods struggle, but regression calibration and 2SLS+GMM can do okay.



All methods work in this scenario

Multiple imputation is inefficient.

Example 1: estimator of the effect of x



A few notes on this scenario.

\(B_x = 0.2\), \(B_g=-0.2\) and \(sd(\varepsilon)=3\). So the signal-to-noise
ratio is high.

\(r\) can be concieved of as a missing feature in the predictive model \(g(k)\)
that is also correlated with \(y\).

For example \(r\) might be the race of a commentor, \(x\) could be racial
harassment, \(y\) whether the commentor gets banned and \(k\) only has
textual features but human coders can see user profiles to know \(r\).

What about bias?
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Takeaways from example 2

Bias in the predictive model creates bias in hypothesis tests.

Bias can be corrected in this case.

The next scenario has bias that's more tricky.

Multiple imputation helps, but doesn't fully correct the bias.



The catch with GMM:

Exclusion restriction: \(E[w \varepsilon] = 0\).

The restriction is violated if a variable \(U\) causes both \(K\) and \(Y\) and \
(X\) causes \(K\) (not visa-versa).

When will GMM+2SLS fail?



Example 3: Estimates of the effect of x



Takaways

Attenuation bias can be a big problem with noisy predictors—leading to small and biased estimates.

For more general hypothesis tests or if the predictor is biased, measurement error can lead to false discovery.

It's fixable with validation data—you may not need that much and you should already be getting it.

This means it can be okay poor predictors for hypothesis testing.

The ecosystem is underdeveloped, but a lot of methods have been researched.

Take advantage of machine learning + big data and get precise estimates when the signal-to-noise ratio is high!
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Future work: Noise in the outcome

I've been focusing on noise in covariates. What if the predictive algorithm is used to measure the outcome \(y\)?

This isn't a problem in the simplest case (linear regression with homoskedastic errors). Noise in \(y\) is projected into the error
term.

Noise in the outcome is still a problem if errors are heteroskedastic and for GLMs / non-linear regression (e.g., logistic regression).

Multiple imputation (in theory) could help here. The other method's aren't designed for this case.

Solving this problem could be an important methodological contribution with a very broad impact.



Questions?
Links to slides:html pdf

Link to a messy git repository:

 nathan.teblunthuis@northwestern.edu

 @groceryheist

 https://communitydata.science

https://teblunthuis.cc/~nathante/slides/ecological_adaptation_ica_2022.html
https://teblunthuis.cc/~nathante/slides/ecological_adaptation_ica_2022.pdf
https://communitydata.science/

