library(predictionError) library(mecor) options(amelia.parallel="no", amelia.ncpus=1) library(Amelia) library(Zelig) library(stats4) ## This uses the pseudolikelihood approach from Carroll page 349. ## assumes MAR ## assumes differential error, but that only depends on Y ## inefficient, because pseudolikelihood logistic.correction.pseudo <- function(df){ p1.est <- mean(df[w_pred==1]$y.obs==1,na.rm=T) p0.est <- mean(df[w_pred==0]$y.obs==0,na.rm=T) nll <- function(B0, Bxy, Bgy){ probs <- (1 - p0.est) + (p1.est + p0.est - 1)*plogis(B0 + Bxy * df$x + Bgy * df$g) part1 = sum(log(probs[df$w_pred == 1])) part2 = sum(log(1-probs[df$w_pred == 0])) return(-1*(part1 + part2)) } mlefit <- stats4::mle(minuslogl = nll, start = list(B0=0, Bxy=0.0, Bgy=0.0)) return(mlefit) } ## This uses the likelihood approach from Carroll page 353. ## assumes that we have a good measurement error model logistic.correction.liklihood <- function(df){ ## liklihood for observed responses nll <- function(B0, Bxy, Bgy, gamma0, gamma_y, gamma_g){ df.obs <- df[!is.na(y.obs)] p.y.obs <- plogis(B0 + Bxy * df.obs$x + Bgy*df.obs$g) p.y.obs[df.obs$y==0] <- 1-p.y.obs[df.obs$y==0] p.s.obs <- plogis(gamma0 + gamma_y * df.obs$y + gamma_g*df.obs$g) p.s.obs[df.obs$w_pred==0] <- 1 - p.s.obs[df.obs$w_pred==0] p.obs <- p.s.obs * p.y.obs df.unobs <- df[is.na(y.obs)] p.unobs.1 <- plogis(B0 + Bxy * df.unobs$x + Bgy*df.unobs$g)*plogis(gamma0 + gamma_y + gamma_g*df.unobs$g) p.unobs.0 <- (1-plogis(B0 + Bxy * df.unobs$x + Bgy*df.unobs$g))*plogis(gamma0 + gamma_g*df.unobs$g) p.unobs <- p.unobs.1 + p.unobs.0 p.unobs[df.unobs$w_pred==0] <- 1 - p.unobs[df.unobs$w_pred==0] p <- c(p.obs, p.unobs) return(-1*(sum(log(p)))) } mlefit <- stats4::mle(minuslogl = nll, start = list(B0=1, Bxy=0,Bgy=0, gamma0=5, gamma_y=0, gamma_g=0)) return(mlefit) } logistic <- function(x) {1/(1+exp(-1*x))} run_simulation_depvar <- function(df, result){ accuracy <- df[,mean(w_pred==y)] result <- append(result, list(accuracy=accuracy)) (model.true <- glm(y ~ x + g, data=df,family=binomial(link='logit'))) true.ci.Bxy <- confint(model.true)['x',] true.ci.Bgy <- confint(model.true)['g',] result <- append(result, list(Bxy.est.true=coef(model.true)['x'], Bgy.est.true=coef(model.true)['g'], Bxy.ci.upper.true = true.ci.Bxy[2], Bxy.ci.lower.true = true.ci.Bxy[1], Bgy.ci.upper.true = true.ci.Bgy[2], Bgy.ci.lower.true = true.ci.Bgy[1])) (model.feasible <- glm(y.obs~x+g,data=df,family=binomial(link='logit'))) feasible.ci.Bxy <- confint(model.feasible)['x',] result <- append(result, list(Bxy.est.feasible=coef(model.feasible)['x'], Bxy.ci.upper.feasible = feasible.ci.Bxy[2], Bxy.ci.lower.feasible = feasible.ci.Bxy[1])) feasible.ci.Bgy <- confint(model.feasible)['g',] result <- append(result, list(Bgy.est.feasible=coef(model.feasible)['g'], Bgy.ci.upper.feasible = feasible.ci.Bgy[2], Bgy.ci.lower.feasible = feasible.ci.Bgy[1])) (model.naive <- glm(w_pred~x+g, data=df, family=binomial(link='logit'))) naive.ci.Bxy <- confint(model.naive)['x',] naive.ci.Bgy <- confint(model.naive)['g',] result <- append(result, list(Bxy.est.naive=coef(model.naive)['x'], Bgy.est.naive=coef(model.naive)['g'], Bxy.ci.upper.naive = naive.ci.Bxy[2], Bxy.ci.lower.naive = naive.ci.Bxy[1], Bgy.ci.upper.naive = naive.ci.Bgy[2], Bgy.ci.lower.naive = naive.ci.Bgy[1])) (model.naive.cont <- lm(w~x+g, data=df)) naivecont.ci.Bxy <- confint(model.naive.cont)['x',] naivecont.ci.Bgy <- confint(model.naive.cont)['g',] ## my implementatoin of liklihood based correction mod.caroll.lik <- logistic.correction.liklihood(df) coef <- coef(mod.caroll.lik) ci <- confint(mod.caroll.lik) result <- append(result, list(Bxy.est.mle = coef['Bxy'], Bxy.ci.upper.mle = ci['Bxy','97.5 %'], Bxy.ci.lower.mle = ci['Bxy','2.5 %'], Bgy.est.mle = coef['Bgy'], Bgy.ci.upper.mle = ci['Bgy','97.5 %'], Bgy.ci.lower.mle = ci['Bgy','2.5 %'])) ## my implementatoin of liklihood based correction mod.caroll.pseudo <- logistic.correction.pseudo(df) coef <- coef(mod.caroll.pseudo) ci <- confint(mod.caroll.pseudo) result <- append(result, list(Bxy.est.pseudo = coef['Bxy'], Bxy.ci.upper.pseudo = ci['Bxy','97.5 %'], Bxy.ci.lower.pseudo = ci['Bxy','2.5 %'], Bgy.est.pseudo = coef['Bgy'], Bgy.ci.upper.pseudo = ci['Bgy','97.5 %'], Bgy.ci.lower.pseudo = ci['Bgy','2.5 %'])) # amelia says use normal distribution for binary variables. amelia.out.k <- amelia(df, m=200, p2s=0, idvars=c('y','ystar','w_pred')) mod.amelia.k <- zelig(y.obs~x+g, model='ls', data=amelia.out.k$imputations, cite=FALSE) (coefse <- combine_coef_se(mod.amelia.k, messages=FALSE)) est.x.mi <- coefse['x','Estimate'] est.x.se <- coefse['x','Std.Error'] result <- append(result, list(Bxy.est.amelia.full = est.x.mi, Bxy.ci.upper.amelia.full = est.x.mi + 1.96 * est.x.se, Bxy.ci.lower.amelia.full = est.x.mi - 1.96 * est.x.se )) est.g.mi <- coefse['g','Estimate'] est.g.se <- coefse['g','Std.Error'] result <- append(result, list(Bgy.est.amelia.full = est.g.mi, Bgy.ci.upper.amelia.full = est.g.mi + 1.96 * est.g.se, Bgy.ci.lower.amelia.full = est.g.mi - 1.96 * est.g.se )) return(result) } run_simulation <- function(df, result){ accuracy <- df[,mean(w_pred==x)] result <- append(result, list(accuracy=accuracy)) (model.true <- lm(y ~ x + g, data=df)) true.ci.Bxy <- confint(model.true)['x',] true.ci.Bgy <- confint(model.true)['g',] result <- append(result, list(Bxy.est.true=coef(model.true)['x'], Bgy.est.true=coef(model.true)['g'], Bxy.ci.upper.true = true.ci.Bxy[2], Bxy.ci.lower.true = true.ci.Bxy[1], Bgy.ci.upper.true = true.ci.Bgy[2], Bgy.ci.lower.true = true.ci.Bgy[1])) (model.feasible <- lm(y~x.obs+g,data=df)) feasible.ci.Bxy <- confint(model.feasible)['x.obs',] result <- append(result, list(Bxy.est.feasible=coef(model.feasible)['x.obs'], Bxy.ci.upper.feasible = feasible.ci.Bxy[2], Bxy.ci.lower.feasible = feasible.ci.Bxy[1])) feasible.ci.Bgy <- confint(model.feasible)['g',] result <- append(result, list(Bgy.est.feasible=coef(model.feasible)['g'], Bgy.ci.upper.feasible = feasible.ci.Bgy[2], Bgy.ci.lower.feasible = feasible.ci.Bgy[1])) (model.naive <- lm(y~w+g, data=df)) naive.ci.Bxy <- confint(model.naive)['w',] naive.ci.Bgy <- confint(model.naive)['g',] result <- append(result, list(Bxy.est.naive=coef(model.naive)['w'], Bgy.est.naive=coef(model.naive)['g'], Bxy.ci.upper.naive = naive.ci.Bxy[2], Bxy.ci.lower.naive = naive.ci.Bxy[1], Bgy.ci.upper.naive = naive.ci.Bgy[2], Bgy.ci.lower.naive = naive.ci.Bgy[1])) amelia.out.k <- amelia(df, m=200, p2s=0, idvars=c('x','w_pred')) mod.amelia.k <- zelig(y~x.obs+g, model='ls', data=amelia.out.k$imputations, cite=FALSE) (coefse <- combine_coef_se(mod.amelia.k, messages=FALSE)) est.x.mi <- coefse['x.obs','Estimate'] est.x.se <- coefse['x.obs','Std.Error'] result <- append(result, list(Bxy.est.amelia.full = est.x.mi, Bxy.ci.upper.amelia.full = est.x.mi + 1.96 * est.x.se, Bxy.ci.lower.amelia.full = est.x.mi - 1.96 * est.x.se )) est.g.mi <- coefse['g','Estimate'] est.g.se <- coefse['g','Std.Error'] result <- append(result, list(Bgy.est.amelia.full = est.g.mi, Bgy.ci.upper.amelia.full = est.g.mi + 1.96 * est.g.se, Bgy.ci.lower.amelia.full = est.g.mi - 1.96 * est.g.se )) ## What if we can't observe k -- most realistic scenario. We can't include all the ML features in a model. ## amelia.out.nok <- amelia(df, m=200, p2s=0, idvars=c("x","w_pred"), noms=noms) ## mod.amelia.nok <- zelig(y~x.obs+g, model='ls', data=amelia.out.nok$imputations, cite=FALSE) ## (coefse <- combine_coef_se(mod.amelia.nok, messages=FALSE)) ## est.x.mi <- coefse['x.obs','Estimate'] ## est.x.se <- coefse['x.obs','Std.Error'] ## result <- append(result, ## list(Bxy.est.amelia.nok = est.x.mi, ## Bxy.ci.upper.amelia.nok = est.x.mi + 1.96 * est.x.se, ## Bxy.ci.lower.amelia.nok = est.x.mi - 1.96 * est.x.se ## )) ## est.g.mi <- coefse['g','Estimate'] ## est.g.se <- coefse['g','Std.Error'] ## result <- append(result, ## list(Bgy.est.amelia.nok = est.g.mi, ## Bgy.ci.upper.amelia.nok = est.g.mi + 1.96 * est.g.se, ## Bgy.ci.lower.amelia.nok = est.g.mi - 1.96 * est.g.se ## )) N <- nrow(df) m <- nrow(df[!is.na(x.obs)]) p <- v <- train <- rep(0,N) M <- m p[(M+1):(N)] <- 1 v[1:(M)] <- 1 df <- df[order(x.obs)] y <- df[,y] x <- df[,x.obs] g <- df[,g] w <- df[,w] # gmm gets pretty close (gmm.res <- predicted_covariates(y, x, g, w, v, train, p, max_iter=100, verbose=TRUE)) result <- append(result, list(Bxy.est.gmm = gmm.res$beta[1,1], Bxy.ci.upper.gmm = gmm.res$confint[1,2], Bxy.ci.lower.gmm = gmm.res$confint[1,1], gmm.ER_pval = gmm.res$ER_pval )) result <- append(result, list(Bgy.est.gmm = gmm.res$beta[2,1], Bgy.ci.upper.gmm = gmm.res$confint[2,2], Bgy.ci.lower.gmm = gmm.res$confint[2,1])) mod.calibrated.mle <- mecor(y ~ MeasError(w, reference = x.obs) + g, df, B=400, method='efficient') (mod.calibrated.mle) (mecor.ci <- summary(mod.calibrated.mle)$c$ci['x.obs',]) result <- append(result, list( Bxy.est.mecor = mecor.ci['Estimate'], Bxy.upper.mecor = mecor.ci['UCI'], Bxy.lower.mecor = mecor.ci['LCI']) ) (mecor.ci <- summary(mod.calibrated.mle)$c$ci['g',]) result <- append(result, list( Bgy.est.mecor = mecor.ci['Estimate'], Bgy.upper.mecor = mecor.ci['UCI'], Bgy.lower.mecor = mecor.ci['LCI']) ) ## clean up memory ## rm(list=c("df","y","x","g","w","v","train","p","amelia.out.k","amelia.out.nok", "mod.calibrated.mle","gmm.res","mod.amelia.k","mod.amelia.nok", "model.true","model.naive","model.feasible")) ## gc() return(result) }