### EXAMPLE 1: demonstrates how measurement error can lead to a type sign error in a covariate ### What kind of data invalidates fong + tyler? ### Even when you have a good predictor, if it's biased against a covariate you can get the wrong sign. ### Even when you include the proxy variable in the regression. ### But with some ground truth and multiple imputation, you can fix it. library(argparser) library(mecor) library(ggplot2) library(data.table) library(filelock) library(arrow) library(Amelia) library(Zelig) library(predictionError) options(amelia.parallel="no", amelia.ncpus=1) setDTthreads(40) source("simulation_base.R") ## SETUP: ### we want to estimate x -> y; x is MAR ### we have x -> k; k -> w; x -> w is used to predict x via the model w. ### A realistic scenario is that we have an NLP model predicting something like "racial harassment" in social media comments ### The labels x are binary, but the model provides a continuous predictor ### simulation: #### how much power do we get from the model in the first place? (sweeping N and m) #### ## one way to do it is by adding correlation to x.obs and y that isn't in w. ## in other words, the model is missing an important feature of x.obs that's related to y. simulate_data <- function(N, m, B0, Bxy, Bgy, seed, y_explained_variance=0.025, prediction_accuracy=0.73, accuracy_imbalance_difference=0.3){ set.seed(seed) # make w and y dependent g <- rbinom(N, 1, 0.5) x <- rbinom(N, 1, 0.5) y.var.epsilon <- (var(Bgy * g) + var(Bxy *x) + 2*cov(Bgy*g,Bxy*x)) * ((1-y_explained_variance)/y_explained_variance) y.epsilon <- rnorm(N, sd = sqrt(y.var.epsilon)) y <- Bgy * g + Bxy * x + y.epsilon df <- data.table(x=x,y=y,g=g) if(m < N){ df <- df[sample(nrow(df), m), x.obs := x] } else { df <- df[, x.obs := x] } df <- df[,w_pred:=x] pg <- mean(g) px <- mean(x) accuracy_imbalance_ratio <- (prediction_accuracy + accuracy_imbalance_difference/2) / (prediction_accuracy - accuracy_imbalance_difference/2) # this works because of conditional probability accuracy_g0 <- prediction_accuracy / (pg*(accuracy_imbalance_ratio) + (1-pg)) accuracy_g1 <- accuracy_imbalance_ratio * accuracy_g0 dfg0 <- df[g==0] ng0 <- nrow(dfg0) dfg1 <- df[g==1] ng1 <- nrow(dfg1) dfg0 <- dfg0[sample(ng0, (1-accuracy_g0)*ng0), w_pred := (w_pred-1)**2] dfg1 <- dfg1[sample(ng1, (1-accuracy_g1)*ng1), w_pred := (w_pred-1)**2] df <- rbind(dfg0,dfg1) w <- predict(glm(x ~ w_pred,data=df,family=binomial(link='logit')),type='response') df <- df[,':='(w=w, w_pred = w_pred)] return(df) } parser <- arg_parser("Simulate data and fit corrected models") parser <- add_argument(parser, "--N", default=5000, help="number of observations of w") parser <- add_argument(parser, "--m", default=200, help="m the number of ground truth observations") parser <- add_argument(parser, "--seed", default=432, help='seed for the rng') parser <- add_argument(parser, "--outfile", help='output file', default='example_2.feather') parser <- add_argument(parser, "--y_explained_variance", help='what proportion of the variance of y can be explained?', default=0.01) parser <- add_argument(parser, "--prediction_accuracy", help='how accurate is the predictive model?', default=0.73) parser <- add_argument(parser, "--accuracy_imbalance_difference", help='how much more accurate is the predictive model for one class than the other?', default=0.3) args <- parse_args(parser) B0 <- 0 Bxy <- 0.2 Bgy <- -0.2 df <- simulate_data(args$N, args$m, B0, Bxy, Bgy, args$seed, args$y_explained_variance, args$prediction_accuracy, args$accuracy_imbalance_difference) result <- list('N'=args$N,'m'=args$m,'B0'=B0,'Bxy'=Bxy,'Bgy'=Bgy, 'seed'=args$seed, 'y_explained_variance'=args$y_explained_variance, 'prediction_accuracy'=args$prediction_accuracy, 'accuracy_imbalance_difference'=args$accuracy_imbalance_difference) outline <- run_simulation_depvar(df=df, result) outfile_lock <- lock(paste0(args$outfile, '_lock'),exclusive=TRUE) if(file.exists(args$outfile)){ logdata <- read_feather(args$outfile) logdata <- rbind(logdata,as.data.table(outline)) } else { logdata <- as.data.table(outline) } print(outline) write_feather(logdata, args$outfile) unlock(outfile_lock)