source("RemembR/R/RemembeR.R") library(arrow) library(data.table) library(ggplot2) library(filelock) library(argparser) parser <- arg_parser("Simulate data and fit corrected models.") parser <- add_argument(parser, "--infile", default="", help="name of the file to read.") parser <- add_argument(parser, "--name", default="", help="The name to safe the data to in the remember file.") args <- parse_args(parser) build_plot_dataset <- function(df){ x.naive <- df[,.(N, m, Bxy, Bxy.est.naive, Bxy.ci.lower.naive, Bxy.ci.upper.naive)] x.naive <- x.naive[,':='(true.in.ci = as.integer((Bxy >= Bxy.ci.lower.naive) & (Bxy <= Bxy.ci.upper.naive)), zero.in.ci = (0 >= Bxy.ci.lower.naive) & (0 <= Bxy.ci.upper.naive), bias = Bxy - Bxy.est.naive, Bxy.est.naive = Bxy.est.naive, sign.correct = as.integer(sign(Bxy) == sign(Bxy.est.naive)))] x.naive.plot <- x.naive[,.(p.true.in.ci = mean(true.in.ci), mean.bias = mean(bias), mean.est = mean(Bxy.est.naive), var.est = var(Bxy.est.naive), N.sims = .N, p.sign.correct = mean(as.integer(sign.correct & (! zero.in.ci))), variable='x', method='Naive' ), by=c('N','m')] g.naive <- df[,.(N, m, Bgy, Bgy.est.naive, Bgy.ci.lower.naive, Bgy.ci.upper.naive)] g.naive <- g.naive[,':='(true.in.ci = as.integer((Bgy >= Bgy.ci.lower.naive) & (Bgy <= Bgy.ci.upper.naive)), zero.in.ci = (0 >= Bgy.ci.lower.naive) & (0 <= Bgy.ci.upper.naive), bias = Bgy - Bgy.est.naive, Bgy.est.naive = Bgy.est.naive, sign.correct = as.integer(sign(Bgy) == sign(Bgy.est.naive)))] g.naive.plot <- g.naive[,.(p.true.in.ci = mean(true.in.ci), mean.bias = mean(bias), mean.est = mean(Bgy.est.naive), var.est = var(Bgy.est.naive), N.sims = .N, p.sign.correct = mean(as.integer(sign.correct & (! zero.in.ci))), variable='g', method='Naive' ), by=c('N','m')] x.feasible <- df[,.(N, m, Bxy, Bxy.est.feasible, Bxy.ci.lower.feasible, Bxy.ci.upper.feasible)] x.feasible <- x.feasible[,':='(true.in.ci = as.integer((Bxy >= Bxy.ci.lower.feasible) & (Bxy <= Bxy.ci.upper.feasible)), zero.in.ci = (0 >= Bxy.ci.lower.feasible) & (0 <= Bxy.ci.upper.feasible), bias = Bxy - Bxy.est.feasible, Bxy.est.feasible = Bxy.est.feasible, sign.correct = as.integer(sign(Bxy) == sign(Bxy.est.feasible)))] x.feasible.plot <- x.feasible[,.(p.true.in.ci = mean(true.in.ci), mean.bias = mean(bias), mean.est = mean(Bxy.est.feasible), var.est = var(Bxy.est.feasible), N.sims = .N, p.sign.correct = mean(as.integer(sign.correct & (! zero.in.ci))), variable='x', method='Feasible' ), by=c('N','m')] g.feasible <- df[,.(N, m, Bgy, Bgy.est.feasible, Bgy.ci.lower.feasible, Bgy.ci.upper.feasible)] g.feasible <- g.feasible[,':='(true.in.ci = as.integer((Bgy >= Bgy.ci.lower.feasible) & (Bgy <= Bgy.ci.upper.feasible)), zero.in.ci = (0 >= Bgy.ci.lower.feasible) & (0 <= Bgy.ci.upper.feasible), bias = Bgy - Bgy.est.feasible, Bgy.est.feasible = Bgy.est.feasible, sign.correct = as.integer(sign(Bgy) == sign(Bgy.est.feasible)))] g.feasible.plot <- g.feasible[,.(p.true.in.ci = mean(true.in.ci), mean.bias = mean(bias), mean.est = mean(Bgy.est.feasible), var.est = var(Bgy.est.feasible), N.sims = .N, p.sign.correct = mean(as.integer(sign.correct & (! zero.in.ci))), variable='g', method='Feasible' ), by=c('N','m')] x.amelia.full <- df[,.(N, m, Bxy, Bxy.est.true, Bxy.ci.lower.amelia.full, Bxy.ci.upper.amelia.full, Bxy.est.amelia.full)] x.amelia.full <- x.amelia.full[,':='(true.in.ci = (Bxy.est.true >= Bxy.ci.lower.amelia.full) & (Bxy.est.true <= Bxy.ci.upper.amelia.full), zero.in.ci = (0 >= Bxy.ci.lower.amelia.full) & (0 <= Bxy.ci.upper.amelia.full), bias = Bxy.est.true - Bxy.est.amelia.full, sign.correct = sign(Bxy.est.true) == sign(Bxy.est.amelia.full))] x.amelia.full.plot <- x.amelia.full[,.(p.true.in.ci = mean(as.integer(true.in.ci)), mean.bias = mean(bias), p.sign.correct = mean(as.integer(sign.correct & (! zero.in.ci))), mean.est = mean(Bxy.est.amelia.full), var.est = var(Bxy.est.amelia.full), N.sims = .N, variable='x', method='Multiple imputation' ), by=c('N','m')] g.amelia.full <- df[,.(N, m, Bgy.est.true, Bgy.est.amelia.full, Bgy.ci.lower.amelia.full, Bgy.ci.upper.amelia.full)] g.amelia.full <- g.amelia.full[,':='(true.in.ci = (Bgy.est.true >= Bgy.ci.lower.amelia.full) & (Bgy.est.true <= Bgy.ci.upper.amelia.full), zero.in.ci = (0 >= Bgy.ci.lower.amelia.full) & (0 <= Bgy.ci.upper.amelia.full), bias = Bgy.est.amelia.full - Bgy.est.true, sign.correct = sign(Bgy.est.true) == sign(Bgy.est.amelia.full))] g.amelia.full.plot <- g.amelia.full[,.(p.true.in.ci = mean(as.integer(true.in.ci)), mean.bias = mean(bias), p.sign.correct = mean(as.integer(sign.correct & (! zero.in.ci))), mean.est = mean(Bgy.est.amelia.full), var.est = var(Bgy.est.amelia.full), N.sims = .N, variable='g', method='Multiple imputation' ), by=c('N','m')] x.mle <- df[,.(N,m, Bxy.est.true, Bxy.est.mle, Bxy.ci.lower.mle, Bxy.ci.upper.mle)] x.mle <- x.mle[,':='(true.in.ci = (Bxy.est.true >= Bxy.ci.lower.mle) & (Bxy.est.true <= Bxy.ci.upper.mle), zero.in.ci = (0 >= Bxy.ci.lower.mle) & (0 <= Bxy.ci.upper.mle), bias = Bxy.est.mle - Bxy.est.true, sign.correct = sign(Bxy.est.true) == sign(Bxy.est.mle))] x.mle.plot <- x.mle[,.(p.true.in.ci = mean(as.integer(true.in.ci)), mean.bias = mean(bias), p.sign.correct = mean(as.integer(sign.correct & (! zero.in.ci))), mean.est = mean(Bxy.est.mle), var.est = var(Bxy.est.mle), N.sims = .N, variable='x', method='Maximum Likelihood' ), by=c('N','m')] g.mle <- df[,.(N,m, Bgy.est.true, Bgy.est.mle, Bgy.ci.lower.mle, Bgy.ci.upper.mle)] g.mle <- g.mle[,':='(true.in.ci = (Bgy.est.true >= Bgy.ci.lower.mle) & (Bgy.est.true <= Bgy.ci.upper.mle), zero.in.ci = (0 >= Bgy.ci.lower.mle) & (0 <= Bgy.ci.upper.mle), bias = Bgy.est.mle - Bgy.est.true, sign.correct = sign(Bgy.est.true) == sign(Bgy.est.mle))] g.mle.plot <- g.mle[,.(p.true.in.ci = mean(as.integer(true.in.ci)), mean.bias = mean(bias), p.sign.correct = mean(as.integer(sign.correct & (! zero.in.ci))), mean.est = mean(Bgy.est.mle), var.est = var(Bgy.est.mle), N.sims = .N, variable='g', method='Maximum Likelihood' ), by=c('N','m')] x.pseudo <- df[,.(N,m, Bxy.est.true, Bxy.est.pseudo, Bxy.ci.lower.pseudo, Bxy.ci.upper.pseudo)] x.pseudo <- x.pseudo[,':='(true.in.ci = (Bxy.est.true >= Bxy.ci.lower.pseudo) & (Bxy.est.true <= Bxy.ci.upper.pseudo), zero.in.ci = (0 >= Bxy.ci.lower.pseudo) & (0 <= Bxy.ci.upper.pseudo), bias = Bxy.est.pseudo - Bxy.est.true, sign.correct = sign(Bxy.est.true) == sign(Bxy.est.pseudo))] x.pseudo.plot <- x.pseudo[,.(p.true.in.ci = mean(as.integer(true.in.ci)), mean.bias = mean(bias), p.sign.correct = mean(as.integer(sign.correct & (! zero.in.ci))), mean.est = mean(Bxy.est.pseudo), var.est = var(Bxy.est.pseudo), N.sims = .N, variable='x', method='Pseudo Likelihood' ), by=c('N','m')] g.pseudo <- df[,.(N,m, Bgy.est.true, Bgy.est.pseudo, Bgy.ci.lower.pseudo, Bgy.ci.upper.pseudo)] g.pseudo <- g.pseudo[,':='(true.in.ci = (Bgy.est.true >= Bgy.ci.lower.pseudo) & (Bgy.est.true <= Bgy.ci.upper.pseudo), zero.in.ci = (0 >= Bgy.ci.lower.pseudo) & (0 <= Bgy.ci.upper.pseudo), bias = Bgy.est.pseudo - Bgy.est.true, sign.correct = sign(Bgy.est.true) == sign(Bgy.est.pseudo))] g.pseudo.plot <- g.pseudo[,.(p.true.in.ci = mean(as.integer(true.in.ci)), mean.bias = mean(bias), p.sign.correct = mean(as.integer(sign.correct & (! zero.in.ci))), mean.est = mean(Bgy.est.pseudo), var.est = var(Bgy.est.pseudo), N.sims = .N, variable='g', method='Pseudo Likelihood' ), by=c('N','m')] accuracy <- df[,mean(accuracy)] plot.df <- rbindlist(list(x.naive.plot,g.naive.plot,x.amelia.full.plot,g.amelia.full.plot,x.mle.plot, g.mle.plot, x.pseudo.plot, g.pseudo.plot, x.feasible.plot, g.feasible.plot),use.names=T) plot.df[,accuracy := accuracy] plot.df <- plot.df[,":="(sd.est=sqrt(var.est)/N.sims)] return(plot.df) } df <- read_feather(args$infile) plot.df <- build_plot_dataset(df) remember(plot.df,args$name) ## df[gmm.ER_pval<0.05] ## ggplot(plot.df[variable=='x'], aes(y=mean.est, ymax=mean.est + var.est/2, ymin=mean.est-var.est/2, x=method)) + geom_pointrange() + facet_grid(-m~N) + scale_x_discrete(labels=label_wrap_gen(10)) ## ggplot(plot.df,aes(y=N,x=m,color=p.sign.correct)) + geom_point() + facet_grid(variable ~ method) + scale_color_viridis_c(option='D') + theme_minimal() + xlab("Number of gold standard labels") + ylab("Total sample size") ## ggplot(plot.df,aes(y=N,x=m,color=abs(mean.bias))) + geom_point() + facet_grid(variable ~ method) + scale_color_viridis_c(option='D') + theme_minimal() + xlab("Number of gold standard labels") + ylab("Total sample size")