require(tibble) require(purrr) .emulate_coding <- function(ground_truth, Q = 1) { if (runif(1) > Q) { return(sample(c(1,0), 1)) } else { return(ground_truth) } } ##irr::kripp.alpha(matrix(c(obs_x, obs_x2), nrow = 2, byrow = TRUE), method = "nominal") ### Which is very close to ## cor(obs_x, obs_x2) .sim <- function(N = 100, P = 0.5, Q = 0.8) { real_x <- rbinom(N, 1, P) obs_x <- purrr::map_dbl(real_x, .emulate_coding, Q = Q) ### then learn w from obs_x and k obs_x2 <- purrr::map_dbl(real_x, .emulate_coding, Q = Q) ra <- sum(diag(table(obs_x, obs_x2))) / N ## raw agreement rr <- cor(obs_x, obs_x2) irr <- irr::kripp.alpha(matrix(c(obs_x, obs_x2), nrow = 2, byrow = TRUE), method = "nominal")$value return(data.frame(N, P, Q, ra, rr, irr)) } N <- c(50, 100, 300) P <- c(0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9) Q <- c(0.5, 0.6, 0.7, 0.8, 0.9, 1) conditions <- tibble::tibble(expand.grid(N, P, Q)) colnames(conditions) <- c("N", "P", "Q") res <- list() for (i in seq_len(nrow(conditions))) { print(i) res[[i]] <- purrr::map_dfr(rep(NA, 100), ~ .sim(conditions$N[i], conditions$P[i], conditions$Q[i])) } conditions$res <- res require(dplyr) conditions %>% mutate(mra = purrr::map_dbl(res, ~mean(.$ra, na.rm = TRUE)), mrr = purrr::map_dbl(res, ~mean(.$rr, na.rm = TRUE)), mirr = purrr::map_dbl(res, ~mean(.$irr, na.rm = TRUE))) %>% lm(mirr~0+P+poly(Q, 2), data =.) %>% summary