### EXAMPLE 2: demonstrates how measurement error can lead to a type sign error in a covariate ### Even when you have a good predictor, if it's biased against a covariate you can get the wrong sign. ### Even when you include the proxy variable in the regression. ### But with some ground truth and multiple imputation, you can fix it. library(argparser) library(mecor) library(ggplot2) library(data.table) library(filelock) library(arrow) library(Amelia) library(Zelig) library(predictionError) source("simulation_base.R") ## SETUP: ### we want to estimate x -> y; x is MAR ### we have x -> k; k -> w; x -> w is used to predict x via the model w. ### A realistic scenario is that we have an NLP model predicting something like "racial harassment" in social media comments ### The labels x are binary, but the model provides a continuous predictor ### simulation: #### how much power do we get from the model in the first place? (sweeping N and m) #### logistic <- function(x) {1/(1+exp(-1*x))} simulate_latent_cocause <- function(N, m, B0, Bxy, Bgy, Bkx, Bgx, seed){ set.seed(seed) ## the true value of x g <- rbinom(N, 1, 0.5) xprime <- Bgx * g + rnorm(N,0,1) k <- Bkx*xprime + rnorm(N,0,3) x <- as.integer(logistic(scale(xprime)) > 0.5) y <- Bxy * x + Bgy * g + rnorm(N, 0, 2) + B0 df <- data.table(x=x,k=k,y=y,g=g) if( m < N){ df <- df[sample(nrow(df), m), x.obs := x] } else { df <- df[, x.obs := x] } w.model <- glm(x ~ k,df, family=binomial(link='logit')) w <- predict(w.model,data.frame(k=k)) + rnorm(N,0,1) ## y = B0 + B1x + e df[,':='(w=w, w_pred = as.integer(w>0.5))] return(df) } parser <- arg_parser("Simulate data and fit corrected models") parser <- add_argument(parser, "--N", default=1000, help="number of observations of w") parser <- add_argument(parser, "--m", default=100, help="m the number of ground truth observations") parser <- add_argument(parser, "--seed", default=432, help='seed for the rng') parser <- add_argument(parser, "--outfile", help='output file', default='example_2_B.feather') args <- parse_args(parser) B0 <- 0 Bxy <- 0.2 Bgy <- 0 Bkx <- 3.2 Bgx <- 0 df <- simulate_latent_cocause(args$N, args$m, B0, Bxy, Bgy, Bkx, Bgx, args$seed) outline <- run_simulation(df ,list('N'=args$N,'m'=args$m,'B0'=B0,'Bxy'=Bxy,'Bgy'=0, 'Bkx'=Bkx, 'Bgx'=0, 'seed'=args$seed)) outfile_lock <- lock(paste0(args$outfile, '_lock')) if(file.exists(args$outfile)){ logdata <- read_feather(args$outfile) logdata <- rbind(logdata,as.data.table(outline)) } else { logdata <- as.data.table(outline) } print(outline) write_feather(logdata, args$outfile) unlock(outfile_lock) ## for(N in Ns){ ## print(N) ## for(m in ms){ ## if(N>m){ ## for(seed in seeds){ ## rows <- append(rows, list(run_simulation(N, m, B0, Bxy, Bkx, seed))) ## } ## } ## } ## } ## run_simulation <- function(N, m, B0, Bxy, Bkx, seed){ ## result <- list() ## df <- simulate_latent_cocause(N, m, B0, Bxy, Bkx, seed) ## result <- append(result, list(N=N, ## m=m, ## B0=B0, ## Bxy=Bxy, ## Bkx=Bkx, ## seed=seed)) ## (correlation <- cor(df$w,df$x,method='spearman')) ## result <- append(result, list(correlation=correlation)) ## (accuracy <- mean(df$x == df$w_pred)) ## result <- append(result, list(accuracy=accuracy)) ## (model.true <- lm(y ~ x, data=df)) ## (cor(resid(model.true),df$w)) ## true.ci.Bxy <- confint(model.true)['x',] ## result <- append(result, list(Bxy.est.true=coef(model.true)['x'], ## Bxy.ci.upper.true = true.ci.Bxy[2], ## Bxy.ci.lower.true = true.ci.Bxy[1])) ## (model.naive <- lm(y~w, data=df)) ## (model.feasible <- lm(y~x.obs,data=df)) ## feasible.ci.Bxy <- confint(model.feasible)['x.obs',] ## result <- append(result, list(Bxy.est.feasible=coef(model.feasible)['x.obs'], ## Bxy.ci.upper.feasible = feasible.ci.Bxy[2], ## Bxy.ci.lower.feasible = feasible.ci.Bxy[1])) ## naive.ci.Bxy <- confint(model.naive)['w',] ## result <- append(result, list(Bxy.est.naive=coef(model.naive)['w'], ## Bxy.ci.upper.naive = naive.ci.Bxy[2], ## Bxy.ci.lower.naive = naive.ci.Bxy[1])) ## ## multiple imputation when k is observed ## amelia.out.k <- amelia(df, m=200, p2s=0, idvars=c('x','w_pred'), noms=c("x.obs"),lgstc=c('w')) ## mod.amelia.k <- zelig(y~x.obs, model='ls', data=amelia.out.k$imputations, cite=FALSE) ## (coefse <- combine_coef_se(mod.amelia.k, messages=FALSE)) ## est.x.mi <- coefse['x.obs','Estimate'] ## est.x.se <- coefse['x.obs','Std.Error'] ## result <- append(result, ## list(Bxy.est.amelia.full = est.x.mi, ## Bxy.ci.upper.amelia.full = est.x.mi + 1.96 * est.x.se, ## Bxy.ci.lower.amelia.full = est.x.mi - 1.96 * est.x.se ## )) ## ## What if we can't observe k -- most realistic scenario. We can't include all the ML features in a model. ## amelia.out.nok <- amelia(df, m=200, p2s=0, idvars=c("x","k","w_pred"),noms=c("x.obs"),lgstc=c('w')) ## mod.amelia.nok <- zelig(y~x.obs, model='ls', data=amelia.out.nok$imputations, cite=FALSE) ## (coefse <- combine_coef_se(mod.amelia.nok, messages=FALSE)) ## est.x.mi <- coefse['x.obs','Estimate'] ## est.x.se <- coefse['x.obs','Std.Error'] ## result <- append(result, ## list(Bxy.est.amelia.nok = est.x.mi, ## Bxy.ci.upper.amelia.nok = est.x.mi + 1.96 * est.x.se, ## Bxy.ci.lower.amelia.nok = est.x.mi - 1.96 * est.x.se ## )) ## p <- v <- train <- rep(0,N) ## M <- m ## p[(M+1):(N)] <- 1 ## v[1:(M)] <- 1 ## df <- df[order(x.obs)] ## y <- df[,y] ## x <- df[,x.obs] ## w <- df[,w] ## (gmm.res <- predicted_covariates(y, x, g, w, v, train, p, max_iter=100, verbose=FALSE)) ## result <- append(result, ## list(Bxy.est.gmm = gmm.res$beta[1,1], ## Bxy.ci.upper.gmm = gmm.res$confint[1,2], ## Bxy.ci.lower.gmm = gmm.res$confint[1,1])) ## mod.calibrated.mle <- mecor(y ~ MeasError(w, reference = x.obs), df, B=400, method='efficient') ## (mecor.ci <- summary(mod.calibrated.mle)$c$ci['x.obs',]) ## result <- append(result, list( ## Bxy.est.mecor = mecor.ci['Estimate'], ## Bxy.upper.mecor = mecor.ci['UCI'], ## Bxy.lower.mecor = mecor.ci['LCI']) ## ) ## return(result) ## }