source("RemembR/R/RemembeR.R") library(arrow) library(data.table) library(ggplot2) df <- data.table(read_feather("example_1.feather")) x.naive <- df[,.(N, m, Bxy, Bxy.est.naive, Bxy.ci.lower.naive, Bxy.ci.upper.naive)] x.naive <- x.naive[,':='(true.in.ci = as.integer((Bxy >= Bxy.ci.lower.naive) & (Bxy <= Bxy.ci.upper.naive)), zero.in.ci = (0 >= Bxy.ci.lower.naive) & (0 <= Bxy.ci.upper.naive), bias = Bxy - Bxy.est.naive, sign.correct = as.integer(sign(Bxy) == sign(Bxy.est.naive)))] x.naive.plot <- x.naive[,.(p.true.in.ci = mean(true.in.ci), mean.bias = mean(bias), p.sign.correct = mean(as.integer(sign.correct & (! zero.in.ci))), mean.estimate=mean(Bxy.est.naive), var.estimate=var(Bxy.est.naive), Bxy=mean(Bxy), variable='x', method='Naive' ), by=c('N','m')] x.amelia.full <- df[,.(N, m, Bxy, Bxy.est.true, Bxy.ci.lower.amelia.full, Bxy.ci.upper.amelia.full, Bxy.est.amelia.full)] x.amelia.full <- x.amelia.full[,':='(true.in.ci = (Bxy.est.true >= Bxy.ci.lower.amelia.full) & (Bxy.est.true <= Bxy.ci.upper.amelia.full), zero.in.ci = (0 >= Bxy.ci.lower.amelia.full) & (0 <= Bxy.ci.upper.amelia.full), bias = Bxy.est.true - Bxy.est.amelia.full, sign.correct = sign(Bxy.est.true) == sign(Bxy.est.amelia.full))] x.amelia.full.plot <- x.amelia.full[,.(p.true.in.ci = mean(as.integer(true.in.ci)), mean.bias = mean(bias), p.sign.correct = mean(as.integer(sign.correct & (! zero.in.ci))), variable='x', method='Multiple imputation' ), by=c('N','m')] g.amelia.full <- df[,.(N, m, Bgy.est.true, Bgy.est.amelia.full, Bgy.ci.lower.amelia.full, Bgy.ci.upper.amelia.full)] g.amelia.full <- g.amelia.full[,':='(true.in.ci = (Bgy.est.true >= Bgy.ci.lower.amelia.full) & (Bgy.est.true <= Bgy.ci.upper.amelia.full), zero.in.ci = (0 >= Bgy.ci.lower.amelia.full) & (0 <= Bgy.ci.upper.amelia.full), bias = Bgy.est.amelia.full - Bgy.est.true, sign.correct = sign(Bgy.est.true) == sign(Bgy.est.amelia.full))] g.amelia.full.plot <- g.amelia.full[,.(p.true.in.ci = mean(as.integer(true.in.ci)), mean.bias = mean(bias), p.sign.correct = mean(as.integer(sign.correct & (! zero.in.ci))), variable='g', method='Multiple imputation' ), by=c('N','m')] x.amelia.nok <- df[,.(N, m, Bxy.est.true, Bxy.est.amelia.nok, Bxy.ci.lower.amelia.nok, Bxy.ci.upper.amelia.nok)] x.amelia.nok <- x.amelia.nok[,':='(true.in.ci = (Bxy.est.true >= Bxy.ci.lower.amelia.nok) & (Bxy.est.true <= Bxy.ci.upper.amelia.nok), zero.in.ci = (0 >= Bxy.ci.lower.amelia.nok) & (0 <= Bxy.ci.upper.amelia.nok), bias = Bxy.est.amelia.nok - Bxy.est.true, sign.correct = sign(Bxy.est.true) == sign(Bxy.est.amelia.nok))] x.amelia.nok.plot <- x.amelia.nok[,.(p.true.in.ci = mean(as.integer(true.in.ci)), mean.bias = mean(bias), p.sign.correct = mean(as.integer(sign.correct & (! zero.in.ci))), variable='x', method='Multiple imputation (Classifier features unobserved)' ), by=c('N','m')] g.amelia.nok <- df[,.(N, m, Bgy.est.true, Bgy.est.amelia.nok, Bgy.ci.lower.amelia.nok, Bgy.ci.upper.amelia.nok)] g.amelia.nok <- g.amelia.nok[,':='(true.in.ci = (Bgy.est.true >= Bgy.ci.lower.amelia.nok) & (Bgy.est.true <= Bgy.ci.upper.amelia.nok), zero.in.ci = (0 >= Bgy.ci.lower.amelia.nok) & (0 <= Bgy.ci.upper.amelia.nok), bias = Bgy.est.amelia.nok - Bgy.est.true, sign.correct = sign(Bgy.est.true) == sign(Bgy.est.amelia.nok))] g.amelia.nok.plot <- g.amelia.nok[,.(p.true.in.ci = mean(as.integer(true.in.ci)), mean.bias = mean(bias), p.sign.correct = mean(as.integer(sign.correct & (! zero.in.ci))), variable='g', method='Multiple imputation (Classifier features unobserved)' ), by=c('N','m')] x.mecor <- df[,.(N,m,Bxy.est.true, Bxy.est.mecor,Bxy.lower.mecor, Bxy.upper.mecor)] x.mecor <- x.mecor[,':='(true.in.ci = (Bxy.est.true >= Bxy.lower.mecor) & (Bxy.est.true <= Bxy.upper.mecor), zero.in.ci = (0 >= Bxy.lower.mecor) & (0 <= Bxy.upper.mecor), bias = Bxy.est.mecor - Bxy.est.true, sign.correct = sign(Bxy.est.true) == sign(Bxy.est.mecor))] x.mecor.plot <- x.mecor[,.(p.true.in.ci = mean(as.integer(true.in.ci)), mean.bias = mean(bias), p.sign.correct = mean(as.integer(sign.correct & (! zero.in.ci))), variable='x', method='Regression Calibration' ), by=c('N','m')] g.mecor <- df[,.(N,m,Bgy.est.true, Bgy.est.mecor,Bgy.lower.mecor, Bgy.upper.mecor)] g.mecor <- g.mecor[,':='(true.in.ci = (Bgy.est.true >= Bgy.lower.mecor) & (Bgy.est.true <= Bgy.upper.mecor), zero.in.ci = (0 >= Bgy.lower.mecor) & (0 <= Bgy.upper.mecor), bias = Bgy.est.mecor - Bgy.est.true, sign.correct = sign(Bgy.est.true) == sign(Bgy.est.mecor))] g.mecor.plot <- g.mecor[,.(p.true.in.ci = mean(as.integer(true.in.ci)), mean.bias = mean(bias), p.sign.correct = mean(as.integer(sign.correct & (! zero.in.ci))), variable='g', method='Regression Calibration' ), by=c('N','m')] ## x.mecor <- df[,.(N,m,Bgy.est.true, Bgy.est.mecor,Bgy.ci.lower.mecor, Bgy.ci.upper.mecor)] ## x.mecor <- x.mecor[,':='(true.in.ci = (Bgy.est.true >= Bgy.ci.lower.mecor) & (Bgy.est.true <= Bgy.ci.upper.mecor), ## zero.in.ci = (0 >= Bgy.ci.lower.mecor) & (0 <= Bgy.ci.upper.mecor), ## bias = Bgy.est.mecor - Bgy.est.true, ## sign.correct = sign(Bgy.est.true) == sign(Bgy.est.mecor))] ## x.mecor.plot <- x.mecor[,.(p.true.in.ci = mean(as.integer(true.in.ci)), ## mean.bias = mean(bias), ## p.sign.correct = mean(as.integer(sign.correct & (! zero.in.ci))), ## variable='g', ## method='Regression Calibration' ## ), ## by=c('N','m')] x.gmm <- df[,.(N,m,Bxy.est.true, Bxy.est.gmm,Bxy.ci.lower.gmm, Bxy.ci.upper.gmm)] x.gmm <- x.gmm[,':='(true.in.ci = (Bxy.est.true >= Bxy.ci.lower.gmm) & (Bxy.est.true <= Bxy.ci.upper.gmm), zero.in.ci = (0 >= Bxy.ci.lower.gmm) & (0 <= Bxy.ci.upper.gmm), bias = Bxy.est.gmm - Bxy.est.true, sign.correct = sign(Bxy.est.true) == sign(Bxy.est.gmm))] x.gmm.plot <- x.gmm[,.(p.true.in.ci = mean(as.integer(true.in.ci)), mean.bias = mean(bias), p.sign.correct = mean(as.integer(sign.correct & (! zero.in.ci))), variable='x', method='2SLS+gmm' ), by=c('N','m')] g.gmm <- df[,.(N,m,Bgy.est.true, Bgy.est.gmm,Bgy.ci.lower.gmm, Bgy.ci.upper.gmm)] g.gmm <- g.gmm[,':='(true.in.ci = (Bgy.est.true >= Bgy.ci.lower.gmm) & (Bgy.est.true <= Bgy.ci.upper.gmm), zero.in.ci = (0 >= Bgy.ci.lower.gmm) & (0 <= Bgy.ci.upper.gmm), bias = Bgy.est.gmm - Bgy.est.true, sign.correct = sign(Bgy.est.true) == sign(Bgy.est.gmm))] g.gmm.plot <- g.gmm[,.(p.true.in.ci = mean(as.integer(true.in.ci)), mean.bias = mean(bias), p.sign.correct = mean(as.integer(sign.correct & (! zero.in.ci))), variable='g', method='2SLS+gmm' ), by=c('N','m')] plot.df <- rbindlist(list(x.naive.plot,g.naive.plot,x.amelia.full.plot,g.amelia.full.plot,x.amelia.nok.plot,g.amelia.nok.plot, x.mecor.plot, g.mecor.plot, x.gmm.plot, g.gmm.plot)) remember(plot.df,'example.1.plot.df') ggplot(plot.df,aes(y=N,x=m,color=p.sign.correct)) + geom_point() + facet_grid(variable ~ method) + scale_color_viridis_c(option='D') + theme_minimal() + xlab("Number of gold standard labels") + ylab("Total sample size") ggplot(plot.df,aes(y=N,x=m,color=abs(mean.bias))) + geom_point() + facet_grid(variable ~ method) + scale_color_viridis_c(option='D') + theme_minimal() + xlab("Number of gold standard labels") + ylab("Total sample size") ests <- df[,.(Bxy.est.true = mean(Bxy.est.true), Bxy.est.naive = mean(Bxy.est.naive), Bxy.est.feasible = mean(Bxy.est.feasible), Bxy.est.amelia.full = mean(Bxy.est.amelia.full), Bxy.est.amelia.nok = mean(Bxy.est.amelia.nok), Bxy.est.mecor = mean(Bxy.est.mecor), Bxy.est.gmm = mean(Bxy.est.gmm)), by=c("N","m")]