library(formula.tools) library(matrixStats) ## df: dataframe to model ## outcome_formula: formula for y | x, z ## outcome_family: family for y | x, z ## proxy_formula: formula for w | x, z, y ## proxy_family: family for w | x, z, y ## truth_formula: formula for x | z ## truth_family: family for x | z ### ideal formulas for example 1 # test.fit.1 <- measerr_mle(df, y ~ x + z, gaussian(), w_pred ~ x, binomial(link='logit'), x ~ z) ### ideal formulas for example 2 # test.fit.2 <- measerr_mle(df, y ~ x + z, gaussian(), w_pred ~ x + z + y + y:x, binomial(link='logit'), x ~ z) ## outcome_formula <- y ~ x + z; proxy_formula <- w_pred ~ y + x + z + x:z + x:y + z:y measerr_mle_dv <- function(df, outcome_formula, outcome_family=binomial(link='logit'), proxy_formula, proxy_family=binomial(link='logit')){ nll <- function(params){ df.obs <- model.frame(outcome_formula, df) proxy.variable <- all.vars(proxy_formula)[1] proxy.model.matrix <- model.matrix(proxy_formula, df) response.var <- all.vars(outcome_formula)[1] y.obs <- with(df.obs,eval(parse(text=response.var))) outcome.model.matrix <- model.matrix(outcome_formula, df.obs) param.idx <- 1 n.outcome.model.covars <- dim(outcome.model.matrix)[2] outcome.params <- params[param.idx:n.outcome.model.covars] param.idx <- param.idx + n.outcome.model.covars if((outcome_family$family == "binomial") & (outcome_family$link == 'logit')){ ll.y.obs <- vector(mode='numeric', length=length(y.obs)) ll.y.obs[y.obs==1] <- plogis(outcome.params %*% t(outcome.model.matrix[y.obs==1,]),log=TRUE) ll.y.obs[y.obs==0] <- plogis(outcome.params %*% t(outcome.model.matrix[y.obs==0,]),log=TRUE,lower.tail=FALSE) } df.obs <- model.frame(proxy_formula,df) n.proxy.model.covars <- dim(proxy.model.matrix)[2] proxy.params <- params[param.idx:(n.proxy.model.covars+param.idx-1)] param.idx <- param.idx + n.proxy.model.covars proxy.obs <- with(df.obs, eval(parse(text=proxy.variable))) if( (proxy_family$family=="binomial") & (proxy_family$link=='logit')){ ll.w.obs <- vector(mode='numeric',length=dim(proxy.model.matrix)[1]) ll.w.obs[proxy.obs==1] <- plogis(proxy.params %*% t(proxy.model.matrix[proxy.obs==1,]),log=TRUE) ll.w.obs[proxy.obs==0] <- plogis(proxy.params %*% t(proxy.model.matrix[proxy.obs==0,]),log=TRUE, lower.tail=FALSE) } ll.obs <- sum(ll.y.obs + ll.w.obs) df.unobs <- df[is.na(df[[response.var]])] df.unobs.y1 <- copy(df.unobs) df.unobs.y1[[response.var]] <- 1 df.unobs.y0 <- copy(df.unobs) df.unobs.y0[[response.var]] <- 1 ## integrate out y outcome.model.matrix.y1 <- model.matrix(outcome_formula, df.unobs.y1) if((outcome_family$family == "binomial") & (outcome_family$link == 'logit')){ ll.y.unobs.1 <- vector(mode='numeric', length=dim(outcome.model.matrix.y1)[1]) ll.y.unobs.0 <- vector(mode='numeric', length=dim(outcome.model.matrix.y1)[1]) ll.y.unobs.1 <- plogis(outcome.params %*% t(outcome.model.matrix.y1),log=TRUE) ll.y.unobs.0 <- plogis(outcome.params %*% t(outcome.model.matrix.y1),log=TRUE,lower.tail=FALSE) } proxy.model.matrix.y1 <- model.matrix(proxy_formula, df.unobs.y1) proxy.model.matrix.y0 <- model.matrix(proxy_formula, df.unobs.y0) proxy.unobs <- with(df.unobs, eval(parse(text=proxy.variable))) if( (proxy_family$family=="binomial") & (proxy_family$link=='logit')){ ll.w.unobs.1 <- vector(mode='numeric',length=dim(proxy.model.matrix.y1)[1]) ll.w.unobs.0 <- vector(mode='numeric',length=dim(proxy.model.matrix.y0)[1]) ll.w.unobs.1[proxy.unobs==1] <- plogis(proxy.params %*% t(proxy.model.matrix.y1[proxy.unobs==1,]),log=TRUE) ll.w.unobs.1[proxy.unobs==0] <- plogis(proxy.params %*% t(proxy.model.matrix.y1[proxy.unobs==0,]),log=TRUE, lower.tail=FALSE) ll.w.unobs.0[proxy.unobs==1] <- plogis(proxy.params %*% t(proxy.model.matrix.y0[proxy.unobs==1,]),log=TRUE) ll.w.unobs.0[proxy.unobs==0] <- plogis(proxy.params %*% t(proxy.model.matrix.y0[proxy.unobs==0,]),log=TRUE, lower.tail=FALSE) } ll.unobs.1 <- ll.y.unobs.1 + ll.w.unobs.1 ll.unobs.0 <- ll.y.unobs.0 + ll.w.unobs.0 ll.unobs <- sum(colLogSumExps(rbind(ll.unobs.1,ll.unobs.0))) ll <- ll.unobs + ll.obs return(-ll) } params <- colnames(model.matrix(outcome_formula,df)) lower <- rep(-Inf, length(params)) proxy.params <- colnames(model.matrix(proxy_formula, df)) params <- c(params, paste0('proxy_',proxy.params)) lower <- c(lower, rep(-Inf, length(proxy.params))) start <- rep(0.1,length(params)) names(start) <- params fit <- optim(start, fn = nll, lower=lower, method='L-BFGS-B', hessian=TRUE, control=list(maxit=1e6)) return(fit) } measerr_mle <- function(df, outcome_formula, outcome_family=gaussian(), proxy_formula, proxy_family=binomial(link='logit'), truth_formula, truth_family=binomial(link='logit')){ measrr_mle_nll <- function(params){ df.obs <- model.frame(outcome_formula, df) proxy.variable <- all.vars(proxy_formula)[1] proxy.model.matrix <- model.matrix(proxy_formula, df) response.var <- all.vars(outcome_formula)[1] y.obs <- with(df.obs,eval(parse(text=response.var))) outcome.model.matrix <- model.matrix(outcome_formula, df) param.idx <- 1 n.outcome.model.covars <- dim(outcome.model.matrix)[2] outcome.params <- params[param.idx:n.outcome.model.covars] param.idx <- param.idx + n.outcome.model.covars ## likelihood for the fully observed data if(outcome_family$family == "gaussian"){ sigma.y <- params[param.idx] param.idx <- param.idx + 1 ll.y.obs <- dnorm(y.obs, outcome.params %*% t(outcome.model.matrix),sd=sigma.y, log=TRUE) } df.obs <- model.frame(proxy_formula,df) n.proxy.model.covars <- dim(proxy.model.matrix)[2] proxy.params <- params[param.idx:(n.proxy.model.covars+param.idx-1)] param.idx <- param.idx + n.proxy.model.covars proxy.obs <- with(df.obs, eval(parse(text=proxy.variable))) if( (proxy_family$family=="binomial") & (proxy_family$link=='logit')){ ll.w.obs <- vector(mode='numeric',length=dim(proxy.model.matrix)[1]) ll.w.obs[proxy.obs==1] <- plogis(proxy.params %*% t(proxy.model.matrix[proxy.obs==1,]),log=TRUE) ll.w.obs[proxy.obs==0] <- plogis(proxy.params %*% t(proxy.model.matrix[proxy.obs==0,]),log=TRUE, lower.tail=FALSE) } df.obs <- model.frame(truth_formula, df) truth.variable <- all.vars(truth_formula)[1] truth.obs <- with(df.obs, eval(parse(text=truth.variable))) truth.model.matrix <- model.matrix(truth_formula,df) n.truth.model.covars <- dim(truth.model.matrix)[2] truth.params <- params[param.idx:(n.truth.model.covars + param.idx - 1)] if( (truth_family$family=="binomial") & (truth_family$link=='logit')){ ll.x.obs <- vector(mode='numeric',length=dim(truth.model.matrix)[1]) ll.x.obs[truth.obs==1] <- plogis(truth.params %*% t(truth.model.matrix[truth.obs==1,]),log=TRUE) ll.x.obs[truth.obs==0] <- plogis(truth.params %*% t(truth.model.matrix[truth.obs==0,]),log=TRUE, lower.tail=FALSE) } ll.obs <- sum(ll.y.obs + ll.w.obs + ll.x.obs) ## likelihood for the predicted data ## integrate out the "truth" variable. if(truth_family$family=='binomial'){ df.unobs <- df[is.na(eval(parse(text=truth.variable)))] df.unobs.x1 <- copy(df.unobs) df.unobs.x1[,'x'] <- 1 df.unobs.x0 <- copy(df.unobs) df.unobs.x0[,'x'] <- 0 outcome.unobs <- with(df.unobs, eval(parse(text=response.var))) outcome.model.matrix.x0 <- model.matrix(outcome_formula, df.unobs.x0) outcome.model.matrix.x1 <- model.matrix(outcome_formula, df.unobs.x1) if(outcome_family$family=="gaussian"){ ll.y.x0 <- dnorm(outcome.unobs, outcome.params %*% t(outcome.model.matrix.x0), sd=sigma.y, log=TRUE) ll.y.x1 <- dnorm(outcome.unobs, outcome.params %*% t(outcome.model.matrix.x1), sd=sigma.y, log=TRUE) } if( (proxy_family$family=='binomial') & (proxy_family$link=='logit')){ proxy.model.matrix.x0 <- model.matrix(proxy_formula, df.unobs.x0) proxy.model.matrix.x1 <- model.matrix(proxy_formula, df.unobs.x1) proxy.unobs <- df.unobs[[proxy.variable]] ll.w.x0 <- vector(mode='numeric', length=dim(df.unobs)[1]) ll.w.x1 <- vector(mode='numeric', length=dim(df.unobs)[1]) ll.w.x0[proxy.unobs==1] <- plogis(proxy.params %*% t(proxy.model.matrix.x0[proxy.unobs==1,]), log=TRUE) ll.w.x1[proxy.unobs==1] <- plogis(proxy.params %*% t(proxy.model.matrix.x1[proxy.unobs==1,]), log=TRUE) ll.w.x0[proxy.unobs==0] <- plogis(proxy.params %*% t(proxy.model.matrix.x0[proxy.unobs==0,]), log=TRUE,lower.tail=FALSE) ll.w.x1[proxy.unobs==0] <- plogis(proxy.params %*% t(proxy.model.matrix.x1[proxy.unobs==0,]), log=TRUE,lower.tail=FALSE) } if(truth_family$link=='logit'){ truth.model.matrix <- model.matrix(truth_formula, df.unobs.x0) ll.x.x0 <- plogis(truth.params %*% t(truth.model.matrix), log=TRUE) ll.x.x1 <- plogis(truth.params %*% t(truth.model.matrix), log=TRUE, lower.tail=FALSE) } } ll.x0 <- ll.y.x0 + ll.w.x0 + ll.x.x0 ll.x1 <- ll.y.x1 + ll.w.x1 + ll.x.x1 ll.unobs <- sum(colLogSumExps(rbind(ll.x0, ll.x1))) return(-(ll.unobs + ll.obs)) } outcome.params <- colnames(model.matrix(outcome_formula,df)) lower <- rep(-Inf, length(outcome.params)) if(outcome_family$family=='gaussian'){ params <- c(outcome.params, 'sigma_y') lower <- c(lower, 0.00001) } else { params <- outcome.params } proxy.params <- colnames(model.matrix(proxy_formula, df)) params <- c(params, paste0('proxy_',proxy.params)) lower <- c(lower, rep(-Inf, length(proxy.params))) truth.params <- colnames(model.matrix(truth_formula, df)) params <- c(params, paste0('truth_', truth.params)) lower <- c(lower, rep(-Inf, length(truth.params))) start <- rep(0.1,length(params)) names(start) <- params fit <- optim(start, fn = measrr_mle_nll, lower=lower, method='L-BFGS-B', hessian=TRUE, control=list(maxit=1e6)) return(fit) }