X-Git-Url: https://code.communitydata.science/ml_measurement_error_public.git/blobdiff_plain/214551f74cc94ef1fa2f24aa317265c25bb03757..d900230ebc453f44afb78f8bc9b12363788e8bfe:/presentations/ica_hackathon_2022/.Rhistory diff --git a/presentations/ica_hackathon_2022/.Rhistory b/presentations/ica_hackathon_2022/.Rhistory deleted file mode 100644 index 85b5482..0000000 --- a/presentations/ica_hackathon_2022/.Rhistory +++ /dev/null @@ -1,291 +0,0 @@ -ls() -weight -weight -lablr -labelr -nrow(labelr) -names(labelr) -names(labelr$data) -labelr$data -labelr -names(labelr) -labelr$labelr -labelr$toxic -setwd("..") -q() -n -summary(toxicity_calibrated) -qplot(labelr$toxic,type='hist') -names(labelr) -labelr$n -labelr -names(labelr) -fbyg -gghist(fbyg$weight) -hist(fbyg$weight) -hist(log(fbyg$weight)) -fbyg$weight==1 -all(fbyg$weight==1) -fbyg$weight[fbyg$weight != 1] -fbyg[fbyg$weight != 1] -fbyg[,fbyg$weight != 1] -fbyg[[fbyg$weight != 1]] -fbyg[fbyg$weight != 1,] -names(labelr) -summary(toxicity_calibrated) -toxicity_calibrated -val.data -names(labelr) -labelr$data -labelr -labelr[data] -labelr[data=='yg'] -labelr[,data=='yg'] -labelr[data=='yg',] -labelr[labelr$data=='yg'] -labelr[,labelr$data=='yg'] -labelr[labelr$data=='yg',] -toxicity_calibrated -summary(toxicity_calibrated) -yg3 -yg3[,['toxic','toxic_pred']] -yg3 %>% select('toxic','toxic_pred') -yg3 |> select('toxic','toxic_pred') -names(yg3) -yg3[,c('toxic_pred','toxic')] -corr(yg3[,c('toxic_pred','toxic')]) -cor(yg3[,c('toxic_pred','toxic')]) -cor(yg3[,c('toxic_pred','toxic')],na.rm=T) -cor(yg3[,c('toxic_pred','toxic')],rm.na=T) -?cor(yg3[,c('toxic_pred','toxic')],use= -?cor -cor(yg3[,c('toxic_pred','toxic')],use='all.obs') -?cor -cor(yg3[,c('toxic_pred','toxic')],use='complete.obs') -cor(yg3[,c('toxic_pred','toxic')],use='complete.obs',method='spearman') -?predict -yg3$toxic_pred -names(preds) -preds -preds -preds$error -preds -preds -summary(errormod) -summary(errormod) -summary(preds) -names(preds) -preds -resids -qplot(resids) -resids -?predict.lm -dnorm(1) -dnorm(2) -dnorm(1) -pnorm(1) -preds -p1 + p2 -p1 + p2 -p1 -p2 -preds -preds1 <- preds -preds1$diff - preds$diff -preds1$diff -preds1$diff - preds1$diff -preds1$diff - preds$diff -preds1$diff - preds$diff -preds1$diff - preds$diff -preds1$diff - preds$diff -preds1 -preds -dnorm(-1) -dnorm(1) -pnorm(1) -pnorm(-1) -pnorm(2) -pnorm(9) -pnorm(6) -pnorm(2) -dnorm(0.95) -qnorm(0.95) -qnorm(0.841) -fulldata_preds -names(yg3) -yg3$toxic_feature_1 -yg3$toxic_feature_2 -yg3 -yg3[,.(toxic_pred,toxic_var)] -yg3[,.(toxic_pred,toxicity_2_pred_sigma,toxicity_1_pred_sigma)] -yg3[,.(toxic_pred,toxicity_2_pred_sigma,toxicity_1_pred_sigma,cov(toxicity_2_pred,toxicity_1_pred))] -cov(1,2) -cov(c(1),c(3)) -cov(c(1),c(3,2)) -cov(c(1,1),c(3,2)) -cov(c(1,2),c(3,2)) -covterm -covterm -?cov -covterm -yg3 -yg3[,.(toxic_pred,toxicity_2_pred_sigma,toxicity_1_pred_sigma,cov(toxicity_2_pred,toxicity_1_pred))] -yg3[,.(toxic_pred,toxicity_2_pred_sigma,toxicity_1_pred_sigma,toxic_var)] -yg3[,.(toxic_pred,toxicity_2_pred_sigma,toxicity_1_pred_sigma,toxic_var,toxic_sd)] -yg3 -names(yg3) -print(sg) -print(sg) -1+1 -library(stargazer) - -stargazer(w1,w2,w3,w4,w5,t1,t2,t3,t4,t5, type="text", - keep = c("cond1","meantox","cond1:meantox","Constant"), - keep.stat=c("n","adj.rsq"), - model.numbers = F, - dep.var.labels = c("DV = Willingness to comment","DV = Toxicity of YG respondent comments"), - covariate.labels = c("Treatment (top comments shown)", - "Average toxicity of top comments", - "Treatment $\times$ top comments toxicity", - "Constant"), - add.lines = list(c("Article fixed effects","No","No","No","Yes","Yes","No","No","No","Yes","Yes")), - star.cutoffs = c(0.05,0.01,0.005), - notes = "Standard errors are clustered at the respondent level.", - column.labels = c("(1)","(2)","(3)","(4)","(5)","(6)","(7)","(8)","(9)","(10)"), - style = "apsr") - -q() -n -yglabels -labelr -names(labelr) -fb -names(fb -) -fb.comment_id -fb['comment_id'] -fb[,'comment_id'] -labelr[,'comment_id'] -names(fb) -fb.labeled -names(fb.labeled) -names(yg) -?amelia -yg -names(yg) -names(yg3) -?rbind -nrow(yg3) -nrow(yg) -yg3[,.(.N),by=.(toxic,fb)] -yg3.toimpute -names(yg3.toimpute) -yg3.toimpute -names(yg3.toimpute) -names(labelr) -nrow(yg3) -nrow(labelr) -?merge.data.table -labelr -is.data.table(labelr) -yg3.toimpute -overimp.grid -overimp.grid -?amelia -q() -n -setwd("presentations/ica_hackathon_2022/") -ls() -attach(r) -example_2_B.plot.df -library(ggplot2) -example_2_B.plot.df[(variable=='x') && (m < 1000)] -example_2_B.plot.df[(variable=='x') && (m < 1000)] -theme_set(theme_default()) -theme_set(theme_minimal()) -theme_set(theme_classic()) -example_2_B.plot.df[(variable=='x') && (m < 1000)] -example_2_B.plot.df[(variable=='x') && (m < 1000),unique(method)] -as.factor -update.packages() -update.packages() -update.packages() -cancel -plot.df -example_2_B.plot.df -plot.df -example_2_B.plot.df -example_2_B.plot.df$method %>% unique -example_2_B.plot.df$method |> unique -example_2_B.plot.df$method |> uniq -unique(example_2_B.plot.df$method) -example_2_B.plot.df$method -example_2_B.plot.df$method -example_2_B.plot.df$method -example_2_B.plot.df$method -example_2_B.plot.df <- r$example_2_B.plot.df -q() -n -setwd("presentations/ica_hackathon_2022/') -setwd("presentations/ica_hackathon_2022/") -example_2_B.plot.df$method -example_2_B.plot.df$method -q() -n -example_2_B.plot.df$method -example_2_B.plot.df$method -q() -n -example_2_B.plot.df$method -example_2_B.plot.df$method -q() -n -q() -n -plot.df -plot.df -plot.df[,.N,by=.(N,m)] -plot.df[,.N,by=.(N,m,method)] -plot.df[variable=='x',.N,by=.(N,m,method)] -plot.df -plot.df[(variable=='x') & (m < 1000) & (!is.na(p.true.in.ci))] -plot.df[(variable=='x') & (m != 1000) & (!is.na(p.true.in.ci))] -plot.df -?label_wrap_gen -install.packages("ggplot2") -devtools::install_github("tidyverse/ggplot2") -2 -library(ggplot2) -ggplot2::version -sessioninfo() -sessionInfo() -q() -n -sessionInfo() -?scale_x_discrete -?facet_grid -plot.df -plot.df -plot.df[method="2SLS+gmm"] -plot.df[method=="2SLS+gmm"] -df <- example_2_B.plot.df -df -q() -n -plot.df -plot.df[m=50] -plot.df[m==50] -plot.df.example.2[m==50][method=2SLS+gmm] -plot.df.example.2[m==50][method==2SLS+gmm] -plot.df.example.2[(m==50) & (method==2SLS+gmm)] -plot.df.example.2[(m==50) & (method=="2SLS+gmm")] -plot.df[m==50] -plot.df.example.3 -plot.df.example.3 -plot.df.example.3[N=25000] -plot.df.example.3[N==25000] -plot.df -plot.df -plot.df -q() -n