X-Git-Url: https://code.communitydata.science/ml_measurement_error_public.git/blobdiff_plain/47e9367ed5c61b721bdc17cddd76bced4f8ed621..979dc14b6861ae31f00d56392fd5b8cf69f17333:/simulations/irr_dv_simulation_base.R diff --git a/simulations/irr_dv_simulation_base.R b/simulations/irr_dv_simulation_base.R new file mode 100644 index 0000000..3f63d7a --- /dev/null +++ b/simulations/irr_dv_simulation_base.R @@ -0,0 +1,107 @@ +library(matrixStats) # for numerically stable logsumexps + +options(amelia.parallel="no", + amelia.ncpus=1) +library(Amelia) + +source("measerr_methods.R") ## for my more generic function. + +run_simulation_depvar <- function(df, result, outcome_formula = y ~ x + z, rater_formula = y.obs ~ x, proxy_formula = w_pred ~ y){ + + accuracy <- df[,mean(w_pred==y)] + result <- append(result, list(accuracy=accuracy)) + + (model.true <- glm(y ~ x + z, data=df, family=binomial(link='logit'))) + true.ci.Bxy <- confint(model.true)['x',] + true.ci.Bzy <- confint(model.true)['z',] + + result <- append(result, list(Bxy.est.true=coef(model.true)['x'], + Bzy.est.true=coef(model.true)['z'], + Bxy.ci.upper.true = true.ci.Bxy[2], + Bxy.ci.lower.true = true.ci.Bxy[1], + Bzy.ci.upper.true = true.ci.Bzy[2], + Bzy.ci.lower.true = true.ci.Bzy[1])) + + + + loa0.feasible <- glm(y.obs.0 ~ x + z, data = df[!(is.na(y.obs.0))], family=binomial(link='logit')) + + loa0.ci.Bxy <- confint(loa0.feasible)['x',] + loa0.ci.Bzy <- confint(loa0.feasible)['z',] + + result <- append(result, list(Bxy.est.loa0.feasible=coef(loa0.feasible)['x'], + Bzy.est.loa0.feasible=coef(loa0.feasible)['z'], + Bxy.ci.upper.loa0.feasible = loa0.ci.Bxy[2], + Bxy.ci.lower.loa0.feasible = loa0.ci.Bxy[1], + Bzy.ci.upper.loa0.feasible = loa0.ci.Bzy[2], + Bzy.ci.lower.loa0.feasible = loa0.ci.Bzy[1])) + + + df.loa0.mle <- copy(df) + df.loa0.mle[,y:=y.obs.0] + loa0.mle <- measerr_mle_dv(df.loa0.mle, outcome_formula=outcome_formula, proxy_formula=proxy_formula) + fisher.info <- solve(loa0.mle$hessian) + coef <- loa0.mle$par + ci.upper <- coef + sqrt(diag(fisher.info)) * 1.96 + ci.lower <- coef - sqrt(diag(fisher.info)) * 1.96 + + result <- append(result, list(Bxy.est.loa0.mle=coef['x'], + Bzy.est.loa0.mle=coef['z'], + Bxy.ci.upper.loa0.mle = ci.upper['x'], + Bxy.ci.lower.loa0.mle = ci.lower['x'], + Bzy.ci.upper.loa0.mle = ci.upper['z'], + Bzy.ci.lower.loa0.mle = ci.upper['z'])) + + loco.feasible <- glm(y.obs.0 ~ x + z, data = df[(!is.na(y.obs.0)) & (y.obs.1 == y.obs.0)], family=binomial(link='logit')) + + loco.feasible.ci.Bxy <- confint(loco.feasible)['x',] + loco.feasible.ci.Bzy <- confint(loco.feasible)['z',] + + result <- append(result, list(Bxy.est.loco.feasible=coef(loco.feasible)['x'], + Bzy.est.loco.feasible=coef(loco.feasible)['z'], + Bxy.ci.upper.loco.feasible = loco.feasible.ci.Bxy[2], + Bxy.ci.lower.loco.feasible = loco.feasible.ci.Bxy[1], + Bzy.ci.upper.loco.feasible = loco.feasible.ci.Bzy[2], + Bzy.ci.lower.loco.feasible = loco.feasible.ci.Bzy[1])) + + + df.loco.mle <- copy(df) + df.loco.mle[,y.obs:=NA] + df.loco.mle[(y.obs.0)==(y.obs.1),y.obs:=y.obs.0] + df.loco.mle[,y.true:=y] + df.loco.mle[,y:=y.obs] + print(df.loco.mle[!is.na(y.obs.1),mean(y.true==y,na.rm=TRUE)]) + loco.mle <- measerr_mle_dv(df.loco.mle, outcome_formula=outcome_formula, proxy_formula=proxy_formula) + fisher.info <- solve(loco.mle$hessian) + coef <- loco.mle$par + ci.upper <- coef + sqrt(diag(fisher.info)) * 1.96 + ci.lower <- coef - sqrt(diag(fisher.info)) * 1.96 + + result <- append(result, list(Bxy.est.loco.mle=coef['x'], + Bzy.est.loco.mle=coef['z'], + Bxy.ci.upper.loco.mle = ci.upper['x'], + Bxy.ci.lower.loco.mle = ci.lower['x'], + Bzy.ci.upper.loco.mle = ci.upper['z'], + Bzy.ci.lower.loco.mle = ci.upper['z'])) + + print(rater_formula) + print(proxy_formula) + + ## mle.irr <- measerr_irr_mle( df, outcome_formula = outcome_formula, rater_formula = rater_formula, proxy_formula=proxy_formula, truth_formula=truth_formula) + + ## fisher.info <- solve(mle.irr$hessian) + ## coef <- mle.irr$par + ## ci.upper <- coef + sqrt(diag(fisher.info)) * 1.96 + ## ci.lower <- coef - sqrt(diag(fisher.info)) * 1.96 + + ## result <- append(result, + ## list(Bxy.est.mle = coef['x'], + ## Bxy.ci.upper.mle = ci.upper['x'], + ## Bxy.ci.lower.mle = ci.lower['x'], + ## Bzy.est.mle = coef['z'], + ## Bzy.ci.upper.mle = ci.upper['z'], + ## Bzy.ci.lower.mle = ci.lower['z'])) + + return(result) + +}