X-Git-Url: https://code.communitydata.science/ml_measurement_error_public.git/blobdiff_plain/47e9367ed5c61b721bdc17cddd76bced4f8ed621..979dc14b6861ae31f00d56392fd5b8cf69f17333:/simulations/plot_irr_dv_example.R diff --git a/simulations/plot_irr_dv_example.R b/simulations/plot_irr_dv_example.R new file mode 100644 index 0000000..f5e2c41 --- /dev/null +++ b/simulations/plot_irr_dv_example.R @@ -0,0 +1,63 @@ +source("RemembR/R/RemembeR.R") +library(arrow) +library(data.table) +library(ggplot2) +library(filelock) +library(argparser) + +parser <- arg_parser("Simulate data and fit corrected models.") +parser <- add_argument(parser, "--infile", default="", help="name of the file to read.") +parser <- add_argument(parser, "--name", default="", help="The name to safe the data to in the remember file.") +args <- parse_args(parser) +source("summarize_estimator.R") + +build_plot_dataset <- function(df){ + + x.true <- summarize.estimator(df, 'true','x') + + z.true <- summarize.estimator(df, 'true','z') + + x.loa0.feasible <- summarize.estimator(df, 'loa0.feasible','x') + + z.loa0.feasible <- summarize.estimator(df,'loa0.feasible','z') + + x.loa0.mle <- summarize.estimator(df, 'loa0.mle', 'x') + + z.loa0.mle <- summarize.estimator(df, 'loa0.mle', 'z') + + x.loco.feasible <- summarize.estimator(df, 'loco.feasible', 'x') + + z.loco.feasible <- summarize.estimator(df, 'loco.feasible', 'z') + + x.loco.mle <- summarize.estimator(df, 'loco.mle', 'x') + + z.loco.mle <- summarize.estimator(df, 'loco.mle', 'z') + + + accuracy <- df[,mean(accuracy)] + plot.df <- rbindlist(list(x.true,z.true,x.loa0.feasible,z.loa0.feasible,x.loa0.mle,z.loa0.mle,x.loco.feasible, z.loco.feasible, z.loco.mle, x.loco.mle),use.names=T) + plot.df[,accuracy := accuracy] + plot.df <- plot.df[,":="(sd.est=sqrt(var.est)/N.sims)] + return(plot.df) +} + + +plot.df <- read_feather(args$infile) +print(unique(plot.df$N)) + +# df <- df[apply(df,1,function(x) !any(is.na(x)))] + +if(!('Bzx' %in% names(plot.df))) + plot.df[,Bzx:=NA] + +if(!('accuracy_imbalance_difference' %in% names(plot.df))) + plot.df[,accuracy_imbalance_difference:=NA] + +unique(plot.df[,'accuracy_imbalance_difference']) + +#plot.df <- build_plot_dataset(df[accuracy_imbalance_difference==0.1][N==700]) +plot.df <- build_plot_dataset(plot.df) + +change.remember.file("remember_irr.RDS",clear=TRUE) + +remember(plot.df,args$name)