X-Git-Url: https://code.communitydata.science/ml_measurement_error_public.git/blobdiff_plain/47e9367ed5c61b721bdc17cddd76bced4f8ed621..c45ea9dfebca86dfddc1e9237aa74866c5166519:/simulations/04_depvar_differential.R diff --git a/simulations/04_depvar_differential.R b/simulations/04_depvar_differential.R index 0d436b6..b367080 100644 --- a/simulations/04_depvar_differential.R +++ b/simulations/04_depvar_differential.R @@ -31,12 +31,12 @@ source("simulation_base.R") ## one way to do it is by adding correlation to x.obs and y that isn't in w. ## in other words, the model is missing an important feature of x.obs that's related to y. -simulate_data <- function(N, m, B0, Bxy, Bzy, seed, prediction_accuracy=0.73, x_bias=-0.75){ +simulate_data <- function(N, m, B0, Bxy, Bzy, seed, prediction_accuracy=0.73, z_bias=-0.75){ set.seed(seed) # make w and y dependent - z <- rbinom(N, 1, 0.5) - x <- rbinom(N, 1, 0.5) + z <- rnorm(N,sd=0.5) + x <- rbinom(N,1,0.5) ystar <- Bzy * z + Bxy * x + B0 y <- rbinom(N,1,plogis(ystar)) @@ -51,8 +51,8 @@ simulate_data <- function(N, m, B0, Bxy, Bzy, seed, prediction_accuracy=0.73, x_ df <- df[, y.obs := y] } - odds.y1 <- qlogis(prediction_accuracy) + x_bias*df[y==1]$x - odds.y0 <- qlogis(prediction_accuracy,lower.tail=F) + x_bias*df[y==0]$x + odds.y1 <- qlogis(prediction_accuracy) + z_bias*df[y==1]$z + odds.y0 <- qlogis(prediction_accuracy,lower.tail=F) + z_bias*df[y==0]$z df[y==0,w:=plogis(rlogis(.N,odds.y0))] df[y==1,w:=plogis(rlogis(.N,odds.y1))] @@ -69,29 +69,29 @@ parser <- arg_parser("Simulate data and fit corrected models") parser <- add_argument(parser, "--N", default=1000, help="number of observations of w") parser <- add_argument(parser, "--m", default=500, help="m the number of ground truth observations") parser <- add_argument(parser, "--seed", default=17, help='seed for the rng') -parser <- add_argument(parser, "--outfile", help='output file', default='example_2.feather') -parser <- add_argument(parser, "--y_explained_variance", help='what proportion of the variance of y can be explained?', default=0.005) -parser <- add_argument(parser, "--prediction_accuracy", help='how accurate is the predictive model?', default=0.8) -## parser <- add_argument(parser, "--x_bias_y1", help='how is the classifier biased when y = 1?', default=-0.75) -## parser <- add_argument(parser, "--x_bias_y0", help='how is the classifier biased when y = 0 ?', default=0.75) -parser <- add_argument(parser, "--x_bias", help='how is the classifier biased?', default=0.75) -parser <- add_argument(parser, "--Bxy", help='coefficient of x on y', default=0.3) -parser <- add_argument(parser, "--Bzy", help='coeffficient of z on y', default=-0.3) +parser <- add_argument(parser, "--outfile", help='output file', default='example_4.feather') +parser <- add_argument(parser, "--prediction_accuracy", help='how accurate is the predictive model?', default=0.79) +## parser <- add_argument(parser, "--z_bias_y1", help='how is the classifier biased when y = 1?', default=-0.75) +## parser <- add_argument(parser, "--z_bias_y0", help='how is the classifier biased when y = 0 ?', default=0.75) +parser <- add_argument(parser, "--z_bias", help='how is the classifier biased?', default=1.5) +parser <- add_argument(parser, "--Bxy", help='coefficient of x on y', default=0.1) +parser <- add_argument(parser, "--Bzy", help='coeffficient of z on y', default=-0.1) +parser <- add_argument(parser, "--B0", help='coeffficient of z on y', default=-0.1) parser <- add_argument(parser, "--outcome_formula", help='formula for the outcome variable', default="y~x+z") -parser <- add_argument(parser, "--proxy_formula", help='formula for the proxy variable', default="w_pred~y+x") +parser <- add_argument(parser, "--proxy_formula", help='formula for the proxy variable', default="w_pred~y+z") args <- parse_args(parser) -B0 <- 0 +B0 <- args$B0 Bxy <- args$Bxy Bzy <- args$Bzy if(args$m < args$N){ - df <- simulate_data(args$N, args$m, B0, Bxy, Bzy, args$seed, args$prediction_accuracy, args$x_bias) + df <- simulate_data(args$N, args$m, B0, Bxy, Bzy, args$seed, args$prediction_accuracy, args$z_bias) -# result <- list('N'=args$N,'m'=args$m,'B0'=B0,'Bxy'=Bxy,'Bzy'=Bzy, 'seed'=args$seed, 'y_explained_variance'=args$y_explained_variance, 'prediction_accuracy'=args$prediction_accuracy, 'x_bias_y0'=args$x_bias_y0,'x_bias_y1'=args$x_bias_y1,'outcome_formula' = args$outcome_formula, 'proxy_formula' = args$proxy_formula) - result <- list('N'=args$N,'m'=args$m,'B0'=B0,'Bxy'=Bxy,'Bzy'=Bzy, 'seed'=args$seed, 'y_explained_variance'=args$y_explained_variance, 'prediction_accuracy'=args$prediction_accuracy, 'x_bias'=args$x_bias,'outcome_formula' = args$outcome_formula, 'proxy_formula' = args$proxy_formula) +# result <- list('N'=args$N,'m'=args$m,'B0'=B0,'Bxy'=Bxy,'Bzy'=Bzy, 'seed'=args$seed, 'y_explained_variance'=args$y_explained_variance, 'prediction_accuracy'=args$prediction_accuracy, 'z_bias_y0'=args$z_bias_y0,'z_bias_y1'=args$z_bias_y1,'outcome_formula' = args$outcome_formula, 'proxy_formula' = args$proxy_formula) + result <- list('N'=args$N,'m'=args$m,'B0'=B0,'Bxy'=Bxy,'Bzy'=Bzy, 'seed'=args$seed, 'y_explained_variance'=args$y_explained_variance, 'prediction_accuracy'=args$prediction_accuracy, 'z_bias'=args$z_bias,'outcome_formula' = args$outcome_formula, 'proxy_formula' = args$proxy_formula) outline <- run_simulation_depvar(df, result, outcome_formula = as.formula(args$outcome_formula), proxy_formula = as.formula(args$proxy_formula))